Metallic and other inorganic coatings - Simultaneous thickness and electrode potential determination of individual layers in multilayer nickel deposits (STEP test)

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

	This Estonian standard EVS-EN 16866:2017 consists of the English text of the European standard EN 16866:2017.
Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas.	This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation.
Euroopa standardimisorganisatsioonid on teinud Euroopa standardi rahvuslikele liikmetele kättesaadavaks 08.11.2017.	Date of Availability of the European standard is 08.11.2017.
Standard on kättesaadav Eesti Standardikeskusest.	The standard is available from the Estonian Centre for Standardisation.

Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>.

ICS 25.220.40

Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud.

Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Koduleht <u>www.evs.ee</u>; telefon 605 5050; e-post <u>info@evs.ee</u>

The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation.

If you have any questions about copyright, please contact Estonian Centre for Standardisation:

Homepage www.evs.ee; phone +372 605 5050; e-mail info@evs.ee

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM November 2017

ICS 25.220.40

English Version

EN 16866

Metallic and other inorganic coatings - Simultaneous thickness and electrode potential determination of individual layers in multilayer nickel deposits (STEP test)

Revêtements métalliques et autres revêtements inorganiques - Détermination simultanée de l'épaisseur et du potentiel d'électrode de couches individuelles dans des dépôts de nickel multicouches (essai STEP)

Metallische und andere anorganische Überzüge -Schichtpotentialmessung von galvanischen Mehrfach-Nickelschichtsystemen (STEP-Test)

This European Standard was approved by CEN on 11 September 2017.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Sloyakia, Sloyenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

ontents	Page
5.	
ropean foreword	
roduction	
Scope	5
Normative references	5
Test equipment	5
Construction of the measuring cell	
Composition of the test solution	
Requirements	7
Sampling	7
Factors influencing measurement accuracy	7
Electrolyte	7
Conditioning	7
Ni deposits	
Surface cleanliness	
Measurement area and contact pressure	
Electrical contact	
Complete dissolution	
Procedure	
General	
Measurement	
Evaluation	9
Measurement uncertainty	
Test report	14
nex A (informative) Precision data obtained by a ro	und robin test 15
oliography	16
mography	
	YX
	(O)
	· 0
	0,

European foreword

This document (EN 16866:2017) has been prepared by Technical Committee CEN/TC 262 "Metallic and other inorganic coatings, including for corrosion protection and corrosion testing of metals and alloys", the secretariat of which is held by BSI.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by May 2018, and conflicting national standards shall be withdrawn at the latest by May 2018.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

According to the CEN-CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, l, gal, Rc France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Introduction

STEP test is an abbreviation for the term "Simultaneous Thickness and Electrode Potential determination".

The STEP test can be used to measure, in one single operating step, the parameters (thickness of the individual nickel layers and the potential differences among them) relevant for the course of corrosion in a multilayer nickel system and, provided the suitable instruments be applied, to document them as well.

The test is a modification of the well-known coulometric method for the measurement of the coating thickness. This method takes advantage of the fact that, following the anodic dissolution of a nickel coating, a potential jump takes place whose magnitude can be measured against a reference electrode.

Although, nowadays, the STEP test has been incorporated into a number of company standards, particularly in the automobile industry, so far no uniform and generally acknowledged potential difference values are available. At present, values between 80 mV and 150 mV are assumed for double nickel layers, with the semi-bright nickel layer always being nobler than the bright one.

Likewise no obligatory numerical values are available, so far, regarding the potential difference between bright nickel layers and existing special nickel layers (e.g. in the case of micro-porous c. actica. ger alwa. chromium plating). According to the current practical experience, the potential difference is larger than approximately 20 mV, with the bright nickel layer always having to be less noble than the special nickel

1 Scope

This European Standard applies to the measurement of the thickness of the individual nickel layers in electroplated multilayer nickel coatings and to the measurement of the potential differences between the individual nickel layers in electroplated multilayer nickel coatings.

The measurement of coatings or layer systems other than electroplated multilayer nickel coatings is outside the scope of this European Standard.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN ISO 2177, Metallic coatings - Measurement of coating thickness - Coulometric method by anodic dissolution (ISO 2177)

EN ISO 3696, Water for analytical laboratory use - Specification and test methods (ISO 3696)

3 Test equipment

3.1 Construction of the measuring cell

Figure 1 shows two examples of the typical schematic construction of a measuring cell used for the simultaneous determination of layer thicknesses and potential differences in multilayer nickel systems. The cells differ with regard to the implementation of the reference electrode. In Figure 1 a), the reference electrode is a silver wire coated with silver chloride and positioned at the edge of the cell; in Figure 1 b), it is a silver ring coated with silver chloride and positioned at the bottom of the cell. With regard to measurement uncertainty, both variants provide the same result for the measurement of the potential difference and (following calibration) the measurement of the layer thickness, independent of the concrete implementation of the reference electrode.

NOTE 1 The silver ring used as the reference electrode in Figure 1 b) is of advantage insofar as the adjustment of the silver wire, which would otherwise be required, becomes unnecessary, leading to results that are more exact and more reproducible.

NOTE 2 The circulated volume of electrolyte solution is typically some 0,1 ml per second.