EESTI STANDARD

Semiconductor devices - Mechanical and climatic test methods - Part 28: Electrostatic discharge (ESD) sensitivity testing - Charged device model (CDM) device level

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

See Eesti standard EVS-EN 60749-28:2017 sisaldab Euroopa standardi EN 60749-28:2017 ingliskeelset teksti.	This Estonian standard EVS-EN 60749-28:2017 consists of the English text of the European standard EN 60749-28:2017.
Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas.	This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation.
Euroopa standardimisorganisatsioonid on teinud Euroopa standardi rahvuslikele liikmetele kättesaadavaks 30.06.2017.	Date of Availability of the European standard is 30.06.2017.
Standard on kättesaadav Eesti Standardikeskusest.	The standard is available from the Estonian Centre for Standardisation.
lagasisidet standardi sisu kohta on võimalik edastad	da, kasutades EVS-i veebilehel asuvat tagasiside vorm

Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile standardiosakond@evs.ee.

ICS 31.080.01

Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud.

Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Koduleht www.evs.ee; telefon 605 5050; e-post info@evs.ee

The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation.

If you have any questions about copyright, please contact Estonian Centre for Standardisation:

Homepage www.evs.ee; phone +372 605 5050; e-mail info@evs.ee

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 60749-28

June 2017

ICS 31.080.01

English Version

Semiconductor devices - Mechanical and climatic test methods -Part 28: Electrostatic discharge (ESD) sensitivity testing -Charged device model (CDM) - device level (IEC 60749-28:2017)

Dispositifs à semiconducteurs - Méthodes d'essai mécaniques et climatiques - Partie 28: Essai de sensibilité aux décharges électrostatiques (DES) - Modèle de dispositif chargé par contact direct (DC-CDM) (IEC 60749-28:2017) Halbleiterbauelemente - Mechanische und klimatische Prüfverfahren - Teil 28: Prüfung der Empfindlichkeit gegen elektrostatische Entladungen (ESD) - Charged Device Model (CDM) - Device Level (IEC 60749-28:2017)

This European Standard was approved by CENELEC on 2017-05-02. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2017 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

European foreword

The text of document 47/2362/FDIS, future edition 1 of IEC 60749-28, prepared by IEC/TC 47 "Semiconductor devices" in collaboration with IEC/TC 101 "Electrostatics" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 60749-28:2017.

The following dates are fixed:

•	latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2018-02-02
•	latest date by which the national standards conflicting with the	(dow)	2020-05-02

document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 60749-28:2017 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following note has to be added for the standard indicated:

IEC 60749-26 NOTE Harmonized as EN 60749-26.

CONTENTS

FC	DREWO	RD	5
IN	TRODU	CTION	7
1	Scop	e	8
2	Norm	ative references	8
3	Term	s and definitions	8
4	Requ	ired equipment	9
•	<u>4</u> 1	CDM ESD tester	۰ ۵
	4.1	General	3 م
	4.1.1	Current-sensing element	10
	413	Ground plane	10
	4.1.0	Field plate/field plate dielectric laver	10
	415	Charging resistor	11
	4 2	Waveform measurement equipment	11
	4.2.1	General	.11
	422	Cable assemblies	11
	4.2.3	Equipment for high-bandwidth waveform measurement	.11
	4.2.4	Equipment for 1.0 GHz waveform measurement	.11
	4.3	Verification modules (metal discs)	.11
	4.4	Capacitance meter	.11
	4.5	Ohmmeter	.12
5	Perio	dic tester qualification, waveform records, and waveform verification	
-	requi	rements	. 12
	5.1	Overview of required CDM tester evaluations	. 12
	5.2	Waveform capture hardware	. 12
	5.3	Waveform capture setup	. 12
	5.4	Waveform capture procedure	.12
	5.5	CDM tester qualification/requalification procedure	.13
	5.5.1	CDM tester qualification/requalification procedure	.13
	5.5.2	Conditions requiring CDM tester qualification/requalification	.13
	5.5.3	1 GHz oscilloscope correlation with high bandwidth oscilloscope	.14
	5.6	CDM tester quarterly and routine waveform verification procedure	.14
	5.6.1	Quarterly waveform verification procedure	.14
	5.6.2	Routine waveform verification procedure	.14
	5.7	Waveform characteristics	. 14
	5.8	Documentation	. 16
	5.9	Procedure for evaluating full CDM tester charging of a device	.16
6	CDM	ESD testing requirements and procedures	. 17
	6.1	Device handling	. 17
	6.2	Test requirements	. 17
	6.2.1	Test temperature and humidity	.17
	6.2.2	Device test	.17
	6.3	Test procedures	.17
	6.4	CDM test recording / reporting guidelines	. 18
7	CDM	classification criteria	. 18
Ar	nnex A (normative) Verification module (metal disc) specifications and cleaning	
gu	lidelines	for verification modules and testers	. 19

A.1	Tester verification modules and field plate dielectric	19
A.2	Care of verification modules	19
Annex B (sitting on	normative) Capacitance measurement of verification modules (metal discs) a tester field plate dielectric	20
Annex C	(informative) CDM test hardware and metrology improvements	21
Annex D	(informative) CDM tester electrical schematic	23
Annex E ((informative) Sample oscilloscope setup and waveform	24
E.1	General	24
E.2	Settings for the 1 GHz bandwidth oscilloscope	24
E.3	Settings for the high-bandwidth oscilloscope	24
E.4	Setup	24
E.5	Sample waveforms from a 1 GHz oscilloscope	24
E.6	Sample waveforms from an 8 GHz oscilloscope	25
Annex F (informative) Field-induced CDM tester discharge procedures	27
F.1	General	27
F.2	Single discharge procedure	27
F.3	Dual discharge procedure	27
Annex G	(informative) Waveform verification procedures	29
G.1	Factor/offset adjustment method	29
G.2	Software voltage adjustment method	32
G.3	Example parameter recording tables	34
Annex H ((informative) Determining the appropriate charge delay for full charging of a	
large mod	lule or device	36
H.1	General	36
H.2	Procedure for charge delay determination	36
Annex I (i charged c	nformative) Electrostatic discharge (ESD) sensitivity testing direct contact levice model (DC-CDM)	38
1.1	General	
12	Standard test module	38
1.2	Test equipment (CDM simulator)	38
1.0	Test equipment design	
1.3.2	DUT (device under test) support	
133	Metal bar/board	39
134	Fauipment setup	39
1.4	Verification of test equipment	
1.4.1	General description of verification test equipment.	
1.4.2	Instruments for measurement	41
1.4.3	Verification of test equipment, using a current probe	41
1.5	Test procedure	42
1.5.1	Initial measurement	42
1.5.2	Tests	42
1.5.3	Intermediate and final measurement	43
I.6	Failure criteria	43
1.7	Classification criteria	43
1.8	Summary	43
Bibliograp	ohy	44

Figure 2 – CDM characteristic waveform and parameters	16
Figure D.1 – Simplified CDM tester electrical schematic	23
Figure E.1 – 1 GHz TC 500, small verification module	25
Figure E.2 – 1 GHz TC 500, large verification module	25
Figure E.3 – 8 GHz TC 500, small verification module (oscilloscope adjusts for attenuation)	26
Figure E.4 – GHz TC 500, large verification module (oscilloscope adjusts for attenuation)	26
Figure F.1 – Single discharge procedure (field charging, <i>I</i> _{CDM} Pulse, and slow discharge)	27
Figure F.2 – Dual discharge procedure (field charging, 1st <i>I</i> _{CDM} pulse, no field, 2nd <i>I</i> _{CDM} pulse)	28
Figure G.1 – An example of a waveform verification flow for qualification and quarterly checks using the factor/offset adjustment method	30
Figure G.2 – An example of a waveform verification flow for the routine checks using the factor/offset adjustment method	31
Figure G.3 – Example of average <i>I</i> _{peak} for the large verification module – high bandwidth oscilloscope	32
Figure G.4 – An example of a waveform verification flow for qualification and quarterly checks using the software voltage adjustment method	33
Figure G.5 – An example of a waveform verification flow for the routine checks using the software voltage adjustment method	34
Figure H.1 – An example characterization of charge delay vs. <i>I</i> _p	37
Figure I.1 – Examples of discharge circuit where the discharge is caused by closing the switch	39
Figure I.2 – Verification test equipment for measuring the discharge current flowing to the metal bar/board from the standard test module	40
Figure I.3 – Current waveform	40
Figure I.4 – Measurement circuit for verification method using a current probe	41
Table 1 – CDM waveform characteristics for a 1 GHz bandwidth oscilloscope	15
Table 2 – CDM waveform characteristics for a high-bandwidth (≥ 6 GHz) oscilloscope	15
Table 3 – CDM ESDS device classification levels	18
Table A.1 – Specification for CDM tester verification modules (metal discs)	19
Table G.1 – Example waveform parameter recording table for the factor/offset adjustment method	35
Table G.2 – Example waveform parameter recording table for the software voltage adjustment method	35
Table I.1 – Dimensions of the standard test modules	38
Table I.2 – Specified current waveform	40
Table I.3 – Range of peak current I _{p1} for test equipment	41

- 4 -

INTRODUCTION

The earliest electrostatic discharge (ESD) test models and standards simulate a charged object approaching a device and discharging through the device. The most common example is IEC 60749-26, the human body model (HBM). However, with the increasing use of automated device handling systems, another potentially destructive discharge mechanism, the charged device model (CDM), becomes increasingly important. In the CDM, a device itself becomes charged (e.g. by sliding on a surface (tribocharging) or by electric field induction) and is rapidly discharged (by an ESD event) as it closely approaches a conductive object. A critical feature of the CDM is the metal-metal discharge, which results in a very rapid transfer of charge through an air breakdown arc. The CDM test method also simulates metal-metal discharges arising from other similar scenarios, such as the discharging of charged metal objects to devices at different potential.

Accurately quantifying and reproducing this fast metal-metal discharge event is very difficult, if not impossible, due to the limitations of the measuring equipment and its influence on the discharge event. The CDM discharge is generally completed in a few nanoseconds, and peak currents of tens of amperes have been observed. The peak current into the device will vary considerably depending on a large number of factors, including package type and parasitics. The typical failure mechanism observed in MOS devices for the CDM model is dielectric damage, although other damage has been noted.

The CDM charge voltage sensitivity of a given device is package dependent. For example, the same integrated circuit (IC) in a small area package can be less susceptible to CDM damage at a given voltage compared to that same IC in a package of the same type with a larger area. It has been shown that CDM damage susceptibility correlates better to peak current levels than charge voltage.

Jek ckag, n a pac, eptibility c.

SEMICONDUCTOR DEVICES – MECHANICAL AND CLIMATIC TEST METHODS –

Part 28: Electrostatic discharge (ESD) sensitivity testing – Charged device model (CDM) – device level

1 Scope

This part of IEC 60749 establishes the procedure for testing, evaluating, and classifying devices and microcircuits according to their susceptibility (sensitivity) to damage or degradation by exposure to a defined field-induced charged device model (CDM) electrostatic discharge (ESD). All packaged semiconductor devices, thin film circuits, surface acoustic wave (SAW) devices, opto-electronic devices, hybrid integrated circuits (HICs), and multi-chip modules (MCMs) containing any of these devices are to be evaluated according to this document. To perform the tests, the devices are assembled into a package similar to that expected in the final application. This CDM document does not apply to socketed discharge model testers. This document describes the field-induced (FI) method. An alternative, the direct contact (DC) method, is described in Annex I.

The purpose of this document is to establish a test method that will replicate CDM failures and provide reliable, repeatable CDM ESD test results from tester to tester, regardless of device type. Repeatable data will allow accurate classifications and comparisons of CDM ESD sensitivity levels.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1

CDM ESD

charged device model electrostatic discharge

electrostatic discharge (ESD) using the charged device model (CDM) to simulate the actual discharge event that occurs when a charged device is quickly discharged to another object at a lower electrostatic potential through a single pin or terminal

3.2

CDM ESD tester

charged device model electrostatic discharge tester

equipment that simulates the device level CDM ESD event using the non-socketed test method

Note 1 to entry: "Equipment" is referred to as "tester" in this document.