Industrial-process measurement, control and automation - Evaluation of system properties for the purpose of system assessment - Part 1: Terminology and basic concepts # EESTI STANDARDI EESSÕNA ## NATIONAL FOREWORD | | This Estonian standard EVS-EN 61069-1:2016 consists of the English text of the European standard EN 61069-1:2016. | |---|--| | Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas | This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation. | | Euroopa standardimisorganisatsioonid on teinud
Euroopa standardi rahvuslikele liikmetele
kättesaadavaks 28.10.2016. | Date of Availability of the European standard is 28.10.2016. | | Standard on kättesaadav Eesti
Standardikeskusest. | The standard is available from the Estonian Centre for Standardisation. | Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>. ### ICS 25.040.40 Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud. Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Koduleht www.evs.ee; telefon 605 5050; e-post info@evs.ee The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation. If you have any questions about copyright, please contact Estonian Centre for Standardisation: Homepage www.evs.ee; phone +372 605 5050; e-mail info@evs.ee # EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 61069-1 October 2016 ICS 25.040.40 Supersedes EN 61069-1:1993 #### **English Version** Industrial-process measurement, control and automation - Evaluation of system properties for the purpose of system assessment - Part 1: Terminology and basic concepts (IEC 61069-1:2016) Mesure, commande et automation dans les processus industriels - Appréciation des propriétés d'un système en vue de son évaluation - Partie 1: Terminologie et principes de base (IEC 61069-1:2016) Leittechnik für industrielle Prozesse - Ermittlung der Systemeigenschaften zum Zweck der Eignungsbeurteilung eines Systems - Teil 1: Terminologie und Konzepte (IEC 61069-1:2016) This European Standard was approved by CENELEC on 2016-07-20. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels # **European foreword** The text of document 65A/788/FDIS, future edition 2 of IEC 61069-1, prepared by SC 65A "System aspects" of IEC/TC 65 "Industrial-process measurement, control and automation" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 61069-1:2016. The following dates are fixed: | • | latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement | (dop) | 2017-04-28 | |---|--|-------|------------| | • | latest date by which the national standards conflicting with the document have to be withdrawn | (dow) | 2019-10-28 | This document supersedes EN 61069-1:1993. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights. # **Endorsement notice** The text of the International Standard IEC 61069-1:2016 was approved by CENELEC as a European Standard without any modification. In the official version, for Bibliography, the following notes have to be added for the standards indicated: | IEC 61069 Series | NOTE | Harmonized as EN 61069 Series. | |--------------------|------|---| | IEC/TS 62603-1 | NOTE | Harmonized as CLC/TS 62603-1. | | IEC 61800-7-1:2015 | NOTE | Harmonized as EN 61800-7-1:2016 (not modified). | | IEC 61987-1:2006 | NOTE | Harmonized as EN 61987-1:2007 (not modified). | | IEC 61508-1:2010 | NOTE | Harmonized as EN 61508-1:2010 (not modified). | | IEC 82045-1:2001 | NOTE | Harmonized as EN 82045-1:2001 (not modified). | | IEC 60300-3-1 | NOTE | Harmonized as EN 60300-3-1. | | IEC 60654 Series | NOTE | Harmonized as EN 60654 Series. | | IEC 60654-1 | NOTE | Harmonized as EN 60654-1. | | IEC 60654-2 | NOTE | Harmonized as EN 60654-2. | | IEC 60654-3 | NOTE | Harmonized as EN 60654-3. | | IEC 60654-4 | NOTE | Harmonized as EN 60654-4. | | IEC 60038 | NOTE | Harmonized as EN 60038. | | IEC 60721-3-1 | NOTE | Harmonized as EN 60721-3-1. | | IEC 60721-3-2 | NOTE | Harmonized as EN 60721-3-2. | | IEC 60721-3-3 | NOTE | Harmonized as EN 60721-3-3. | | IEC 60721-3-4 | NOTE | Harmonized as EN 60721-3-4. | | IEC 61326-1:2012 | NOTE | Harmonized as EN 61326-1:2013 (not modified). | | IEC 61000-4-3 | NOTE | Harmonized as EN 61000-4-3. | | IEC 61000-4-4 | NOTE | Harmonized as EN 61000-4-4. | | IEC 61000-4-5 | NOTE | Harmonized as EN 61000-4-5. | | IEC 61000-4-6 | NOTE | Harmonized as EN 61000-4-6. | |------------------|----------|---| | IEC 61000-4-8 | NOTE | Harmonized as EN 61000-4-8. | | IEC 61000-4-9 | NOTE | Harmonized as EN 61000-4-9. | | IEC 61000-4-10 | NOTE | Harmonized as EN 61000-4-10. | | IEC 61000-4-11 | NOTE | Harmonized as EN 61000-4-11. | | IEC 61000-2-4 | NOTE | Harmonized as EN 61000-2-4. | | ISO 9001:2015 | NOTE | Harmonized as EN ISO 9001:2015. | | IEC 60664-1 | NOTE | Harmonized as EN 60664-1. | | IEC 61010-1 | NOTE | Harmonized as EN 61010-1. | | IEC 62381 | NOTE | Harmonized as EN 62381. | | | | Harmonized as EN 62443 Series ¹⁾ . | | IEC 62443 Series | NOTE | Harmonized as EN 62443 Series 1. | | | | | | | | | | | | | | | X | | | | | | | | <i>'</i> | | | | \sim | C) | 9× | | | | | | | | | | | | * / / / / / / / / / / / / / / / / / / / | | | | \mathcal{O}_{j} | O' | | | | | | | | | | raft stage. | | | | | | | | | | 3 | | | | | | | | | ¹⁾ At draft stage. # Annex ZA (normative) # Normative references to international publications with their corresponding European publications The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|-------------|--|--------------|-------------| | IEC 61000-4-2 | . (| Electromagnetic compatibility (EMC) -
Part 4-2: Testing and measurement
techniques - Electrostatic discharge
immunity test | EN 61000-4-2 | - | | IEC 61000-6-4 | 2006 | Electromagnetic compatibility (EMC) -
Part 6-4: Generic standards - Emission
standard for industrial environments | EN 61000-6-4 | 2007 | | +A1 | 2010 | standard for industrial environments | +A1 | 2011 | | IEC 61508-4 | 2010 | Functional safety of electrical/electronic/programmable electronic safety-related systems - Part 4: Definitions and abbreviations | EN 61508-4 | 2010 | | IEC 61511-1 | 2003 | Functional safety - Safety instrumented systems for the process industry sector - Part 1: Framework, definitions, system, hardware and software requirements | EN 61511-1 | 2004 | | | | | | | # CONTENTS | FOREWO | RD | 4 | |----------------|--|----| | INTRODU | CTION | 6 | | 1 Scop | e | 8 | | 2 Norm | native references | 8 | | | s, definitions, abbreviated terms, acronyms, conventions and symbols | | | 3.1 | Terms and definitions | | | 3.2 | Abbreviated terms, acronyms, conventions and symbols | | | 3.3 | Explanation of terms with regard to BCS concepts | | | | s of an assessment | | | | ssment considerations | | | 5.1 | Basic control system (BCS) | 19 | | 5.1.1 | | | | 5.1.2 | | | | 5.1.3 | | | | 5.1.4 | | | | 5.1.5 | Human interface functions | 21 | | 5.1.6 | External system interface functions | 21 | | 5.2 | System properties | | | 5.2.1 | Overview | 21 | | 5.2.2 | Functionality | 21 | | 5.2.3 | | 21 | | 5.2.4 | Dependability | 21 | | 5.2.5 | | 22 | | 5.2.6 | System safety | 22 | | 5.2.7 | | | | 5.3 | Influencing factors | 22 | | Annex A (| informative) Examples of Influencing factors (information from 2603-1) | 25 | | A.1 | General | | | | influencing factors | | | A.2
A.2.1 | | 25 | | A.2.1
A.2.2 | | | | A.2.2
A.2.3 | | | | A.2.4 | | | | A.2.4
A.2.5 | | | | A.2.6 | | | | A.2.7 | | | | A.2.8 | · | | | | phy | | | | | 70 | | Figure 1 - | - General layout of IEC 61069 | 7 | | Figure 2 - | - Relationship of terms with regard to SRD and SSD | 17 | | Figure 3 - | - Relation among function, module and element | 18 | | | - Model of basic control systems | | | • | - System properties | | | Figure 6 – Sources of influencing factors | 22 | |--|----| | Fable 1 – Influencing factors examples | 23 | | Γable A.1 – Concentration of gas and vapour contaminants (in cm ³ /m ³) | | | Table A.2 – Aerosol contaminants | | | Table A.3 – Climatic condition parameters and severities for classes of location | | | Γable A.4 – Test levels for RF fields | | | Table A.5 – Test levels for electrical fast transient/burst | | | Table A.6 – Test levels for surge protection | 36 | | Table A.7 – Test levels for RF induced disturbances | | | Table A.8 – Test levels for power frequency magnetic fields | 38 | | Table A.9 – Test levels for pulse magnetic field | 39 | | Table A.10 – Test levels for damped oscillatory magnetic field | 39 | | Table A.11 – Test levels for voltage dips | 40 | | Table A.12 – Test levels for short interruptions | 40 | | Sa preview development of the state s | | #### INTRODUCTION IEC 61069 deals with the method which should be used to assess system properties of a basic control system (BCS). IEC 61069 consists of the following parts: - Part 1: Terminology and basic concepts - Part 2: Assessment methodology - Part 3: Assessment of system functionality - Part 4: Assessment of system performance - Part 5: Assessment of system dependability - Part 6: Assessment of system operability - Part 7: Assessment of system safety - Part 8: Assessment of other system properties Assessment of a system is the judgement, based on evidence, of the suitability of the system for a specific mission or class of missions. To obtain total evidence would require complete evaluation (for example under all influencing factors) of all system properties relevant to the specific mission or class of missions. Since this is rarely practical, the rationale on which an assessment of a system should be based is: - the identification of the importance of each of the relevant system properties; - the planning for evaluation of the relevant system properties with a cost-effective dedication of effort to the various system properties. In conducting an assessment of a system, it is crucial to bear in mind the need to gain a maximum increase in confidence in the suitability of a system within practical cost and time constraints. An assessment can only be carried out if a mission has been stated (or given), or if any mission can be hypothesized. In the absence of a mission, no assessment can be made; however, examination of the system to gather and organize data for a later assessment done by others is possible. In such cases, the standard can be used as a guide for planning an evaluation and it provides methods for performing evaluations, since evaluations are an integral part of assessment. In preparing the assessment, it can be discovered that the definition of the system is too narrow. For example, a facility with two or more revisions of the control systems sharing resources, e.g., a network, should consider issues of co-existence and inter-operability. In this case, the system to be investigated should not be limited to the "new" BCS; it should include both. That is, it should change the boundaries of the system to include enough of the other system to address these concerns. The part structure and the relationship among the parts of IEC 61069 are shown in Figure 1. Figure 1 - General layout of IEC 61069 Some example assessment items are integrated in Annex A.