Workplace atmospheres - Pumps for personal sampling of chemical and biological agents - Requirements and Jic 137:4 test methods (ISO 13137:2013)

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

See Eesti standard EVS-EN ISO 13137:2013	This Estonian standard EVS-EN ISO 13137:2013
sisaldab Euroopa standardi EN ISO 13137:2013	consists of the English text of the European standard
inglisekeelset teksti.	EN ISO 13137:2013.
Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas.	This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation.
	Date of Availability of the European standard is 23.10.2013.
Standard on kättesaadav Eesti Standardikeskusest.	The standard is available from the Estonian Centre for Standardisation.

Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile standardiosakond@evs.ee.

ICS 13.040.30

Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud.

Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Aru 10, 10317 Tallinn, Eesti; www.evs.ee; telefon 605 5050; e-post info@evs.ee

The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation.

If you have any questions about copyright, please contact Estonian Centre for Standardisation: Aru 10, 10317 Tallinn, Estonia; www.evs.ee; phone 605 5050; e-mail info@evs.ee

EUROPEAN STANDARD NORME EUROPÉENNE

EN ISO 13137

EUROPÄISCHE NORM

October 2013

ICS 13.040.30

Supersedes EN 1232:1997, EN 12919:1999

English Version

Workplace atmospheres - Pumps for personal sampling of chemical and biological agents - Requirements and test methods (ISO 13137:2013)

Air des lieux de travail - Pompes pour le prélèvement individuel des agents chimiques et biologiques - Exigences et méthodes d'essai (ISO 13137:2013)

Arbeitsplatzatmosphäre - Pumpen für die personenbezogene Probenahme von chemischen und biologischen Arbeitsstoffen - Anforderungen und Prüfverfahren (ISO 13137:2013)

This European Standard was approved by CEN on 28 September 2013.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

Foreword

This document (EN ISO 13137:2013) has been prepared by Technical Committee ISO/TC 146 "Air quality" in collaboration with Technical Committee CEN/TC 137 "Assessment of workplace exposure to chemical and biological agents" the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by April 2014, and conflicting national standards shall be withdrawn at the latest by April 2014.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 1232:1997, EN 12919:1999.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 13137:2013 has been approved by CEN as EN ISO 13137:2013 without any modification.

Con	tents		Page
Forew	ord		v
) ,		
1			
2		ative references	
3	Terms	and definitions	1
4	Types	of pump	3
5	Requi	rements	3
Ü	5.1	Features	
	5.2	Mass	
	5.3	Design safety	
	5.4	Operating time	4
	5.5	Start-up and long-term performance	4
	5.6	Short-term interruption of air flow	4
	5.7	Temperature dependence	
	5.8	Mechanical strength	
	5.9	Pulsation of flow rate (for type P pumps only)	5
	5.10	Flow rate stability under increasing pressure drop	5
	5.11	Timer accuracy	
	5.12	Electromagnetic compatibility	
	5.13	Explosion hazard	6
6	Test c	onditions	6
	6.1	Number of test objects	6
	6.2	Test instruments	6
	6.3	Preconditioning and sequence of tests	7
	6.4	Adjustment of volume flow rate and pressure drop	7
	6.5	Test set-up and performance	7
7	Test n	nethods	8
-	7.1	Features	
	7.2	Mass	
	7.3	Design safety	
	7.4	Operating time	8
	7.5	Operating time	8
	7.6	Short-term interruption of air flow	9
	7.7	Temperature dependence	
	7.8	Mechanical strength	
	7.9	Pulsation of flow rate (for type P pumps only)	
	7.10	Flow rate stability under increasing pressure drop	
	7.11	Timer accuracy	15
	7.12	Electromagnetic compatibility	15
	7.13	Explosion hazard	15
8	Test r	eport	15
9		actions for use	
10		er	
10	10.1	Requirements	
	10.1	Testing	
4.4			
11		ng	
Annex	A (info	ormative) Types of pump mechanism and control system	18
Annex	B (info	ormative) Internal sensors of sampling pumps	21

EVS-EN ISO 13137:2013

3
V
0
3
Y
O'
4
7
1
S

Introduction

Many different methods are used to determine the concentration of chemical and biological agents in workplace air. Many of these methods involve the use of a pump and sampler connected by a flexible tube. Air is drawn through the sampler and chemical and biological agents are trapped, e.g. on a filter, sorbent tube or long-term detector tube, or in a gas washing bottle. In personal sampling, the pump and sampler are attached to the worker so as to collect chemical and biological agents in the breathing zone.

The volume of air drawn by the pump during the sampling period is one of the quantities in the calculation of the concentration of the chemical and biological agents in air. Therefore, the volume of air sampled should be determined accurately and, in order to facilitate this, the flow rate should be maintained within acceptable limits throughout the sampling period. For particle size selective sampling, the short-term fluctuation of the flow rate should also be maintained within acceptable limits in order to ensure that the sampler exhibits the required collection characteristics.

EN 482[1] specifies general performance criteria for methods for measuring the concentration of chemical and biological agents in workplace air. These performance criteria include maximum values of expanded uncertainty that are not to be exceeded under prescribed laboratory conditions. In addition, the performance criteria should also be met under a wider variety of environmental influences, representative of workplace conditions. The contribution of the sampling pump to measurement uncertainty should be kept to a minimum.

This International Standard is intended to enable manufacturers and users of personal sampling pumps to for,
Imps n.
ences whic. adopt a consistent approach to, and provide a framework for, the assessment of the specified performance criteria. Manufacturers are urged to ensure that pumps meet the requirements laid down in this International Standard, including environmental influences which can be expected to affect performance.

Workplace atmospheres — Pumps for personal sampling of chemical and biological agents — Requirements and test methods

1 Scope

This International Standard specifies performance requirements for battery powered pumps used for personal sampling of chemical and biological agents in workplace air. It also specifies test methods in order to determine the performance characteristics of such pumps under prescribed laboratory conditions.

This International Standard is applicable to battery powered pumps having a nominal volume flow rate above $10 \text{ ml} \cdot \text{min}^{-1}$, as used with combinations of sampler and collection substrate for sampling of gases, vapours, dusts, fumes, mists and fibres.

This International Standard is primarily intended for flow-controlled pumps.

2 Normative references

The following referenced documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60079-0, Explosive atmospheres — Part 0: Equipment — General requirements

IEC 61000-6-1, Electromagnetic compatibility (EMC) — Part 6-1: Generic standards — Immunity for residential, commercial and light-industrial environments

IEC 61000-6-3, Electromagnetic compatibility (EMC) — Part 6-3: Generic standards — Emission standard for residential, commercial and light-industrial environments

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

biological agent

bacteria, viruses, fungi and other micro-organisms or parts of them and their associated toxins, including those which have been genetically modified, cell cultures or endoparasites which are potentially hazardous to human health

Note 1 to entry: Dusts of organic origin, e.g. pollen, flour dust and wood dust, are not considered to be biological agents and are therefore not covered by this definition.

[SOURCE: EN 1540:2011,² definition 2.1.1]

2 2

chemical agent

any chemical element or compound on its own or admixed as it occurs in the natural state or as produced, used, or released, including release as waste, by any work activity, whether or not produced intentionally and whether or not placed on the market

[SOURCE: EN 1540:2011, 2 definition 2.1.2]