

Reference number
ISO/IEC TR 24732:2009(E)

© ISO/IEC 2009

TECHNICAL
REPORT

ISO/IEC
TR

24732

First edition
2009-01-15

Information technology — Programming
languages, their environments and
system software interfaces — Extension
for the programming language C to
support decimal floating-point arithmetic

Technologies de l'information — Langages de programmation, leur
environnement et interfaces des logiciels de systèmes — Extension
pour que le langage de programmation C supporte l'arithmétique du
point flottant décimal

ISO/IEC TR 24732:2009(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2009
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2009 – All rights reserved

This docum
ent is a preview generated by EVS

This docum
ent is a preview generated by EVS

ISO/IEC TR 24732:2009(E)

© ISO/IEC 2009 – All rights reserved iii

Contents Page

Forewordiv

0 Introductionv
0.1 Backgroundv
0.2 The arithmetic model........................... ...v
0.3 The formats.................................... ..vi

1 Scope.. ..1

2 Normative references1

3 Predefined macro name2

4 Decimal floating types........................... ...2

5 Characteristics of decimal floating types <float. h> ..3

6 Conversions5
6.1 Conversions between decimal floating and intege r..5
6.2 Conversions among decimal floating types, and b etween decimal floating types and

generic floating types............................. ..6
6.3 Conversions between decimal floating and comple x ...6
6.4 Usual arithmetic conversions................... ...6
6.5 Default argument promotion..................... ...7

7 Constants7
7.1 Unsuffixed floating constant................... ...7
7.1.1 The FLOAT_CONST_DECIMAL64 pragma8

8 Arithmetic operations............................ ...9
8.1 Operators...................................... ..9
8.2 Functions...................................... ..9
8.3 Conversions10

9 Library.. ...10
9.1 Standard headers10
9.2 Floating-point environment <fenv.h>10
9.3 Decimal mathematics <math.h>................... ..11
9.4 New <math.h> functions18
9.5 Formatted input/output specifiers19
9.6 strtod32, strtod64, and strtod128 functions <st dlib.h>21
9.7 wcstod32, wcstod64, and wcstod128 functions <wc har.h>23
9.8 Type-generic macros <tgmath.h>................. ...25

Bibliography....................................... ...26

This document is a preview generated by EVS

This document is a preview generated by EVS

ISO/IEC TR 24732:2009(E)

iv © ISO/IEC 2009 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, the joint technical committee may propose the publication of a Technical Report
of one of the following types:

— type 1, when the required support cannot be obtained for the publication of an International Standard,
despite repeated efforts;

— type 2, when the subject is still under technical development or where for any other reason there is the
future but not immediate possibility of an agreement on an International Standard;

— type 3, when the joint technical committee has collected data of a different kind from that which is
normally published as an International Standard (“state of the art”, for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether
they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to
be reviewed until the data they provide are considered to be no longer valid or useful.

ISO/IEC TR 24732, which is a Technical Report of type 2, was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments
and system software interfaces.

This document is a preview generated by EVS

This document is a preview generated by EVS

ISO/IEC TR 24732:2009(E)

© ISO/IEC 2009 – All rights reserved v

0 Introduction

0.1 Background

Most of today's general purpose computing architectures provide binary floating-point arithmetic in hardware.
Binary floating-point is an efficient representation which minimizes memory use, and is simpler to implement
than floating-point arithmetic using other bases. It has therefore become the norm for scientific computations,
with almost all implementations following the IEEE 754 standard for binary floating-point arithmetic.

However, human computation and communication of numeric values almost always uses decimal arithmetic
and decimal notations. Laboratory notes, scientific papers, legal documents, business reports and financial
statements all record numeric values in decimal form. When numeric data are given to a program or are
displayed to a user, binary to-and-from decimal conversion is required. There are inherent rounding errors
involved in such conversions; decimal fractions cannot, in general, be represented exactly by binary floating-
point values. These errors often cause usability and efficiency problems, depending on the application.

These problems are minor when the application domain accepts, or requires results to have, associated error
estimates (as is the case with scientific applications). However, in business and financial applications,
computations are either required to be exact (with no rounding errors) unless explicitly rounded, or be
supported by detailed analyses that are auditable to be correct. Such applications therefore have to take
special care in handling any rounding errors introduced by the computations.

The most efficient way to avoid conversion error is to use decimal arithmetic. Currently, the IBM zArchitecture
(and its predecessors since System/360) is a widely used system that supports built-in decimal arithmetic.
This, however, provides integer arithmetic only, meaning that every number and computation has to have
separate scale information preserved and computed in order to maintain the required precision and value
range. Such scaling is difficult to code and is error-prone; it affects execution time significantly, and the
resulting program is often difficult to maintain and enhance.

Even though the hardware may not provide decimal arithmetic operations, the support can still be emulated by
software. Programming languages used for business applications either have native decimal types (such as
PL/I, COBOL, C#, or Visual Basic) or provide decimal arithmetic libraries (such as the BigDecimal class in
Java). The arithmetic used in business applications, nowadays, is almost invariably decimal floating-point; the
COBOL 2002 ISO standard, for example, requires that all standard decimal arithmetic calculations use 32-
digit decimal floating-point.

Arguably, the C language hits a sweet spot within the wide range of programming languages available today –
it strikes an optimal balance between usability and performance. Its simple and expressive syntax makes it
easy to program; and its close-to-the-hardware semantics makes it efficient. Despite the advent of newer
programming languages, C is still often used together with other languages to code the computationally
intensive part of an application. In many cases, entire business applications are written in C/C++. To maintain
the vitality of C, the need for decimal arithmetic by the business and financial community cannot be ignored.

The importance of this has been recognized by the IEEE. The IEEE 754 standard is currently being revised,
and the major change in that revision is the addition of decimal floating-point formats and arithmetic.

Historically there has been a close tie between IEEE 754 and C with respect to floating-point specification.
This Technical Report proposes to add decimal floating types and arithmetic to the C programming language
specification.

0.2 The arithmetic model

This Technical Report proposes to add support for the decimal formats for floating-point data specified in IEEE
754-2008, with operations and behaviors consistent with that specification. IEEE 754-2008 provides a unified
specification for floating-point arithmetic using both binary radix and decimal radix representations. For binary
radix, it specifies upwardly-compatible extensions to the previous version, IEEE 754-1985 (equivalently IEC
60559:1989, which is already supported by C99 implementations that define the macro __STDC_IEC_559__).

This document is a preview generated by EVS

This document is a preview generated by EVS

ISO/IEC TR 24732:2009(E)

vi © ISO/IEC 2009 – All rights reserved

Those extensions are not considered in this proposal. Instead, this proposal confines itself to supporting the
decimal radix formats, which are new in this revision of IEEE 754.

The model of floating-point arithmetic used in IEEE 754-2008 has three components:

 data - numbers and NaNs, which can be manipulated by, or be the results of, the operations it
specifies

 operations - (addition, multiplication, conversions, etc) which can be carried out on data

 context - the status of operations (namely, exceptions flags), and controls to govern the results of
operations (for example, rounding modes). (IEEE 754-2008 does not use a single term to refer to
these collectively.)

The model defines these components in the abstract. It neither defines the way in which operations are
expressed (which might vary depending on the computer language or other interface being used), nor does it
define the concrete representation (specific layout in storage, or in a processor's register, for example) of data
or context, except that it does define specific encodings that are to be used for data that may be exchanged
between different implementations that conform to the specification.

From the perspective of the C language, data are represented by data types, operations are defined within
expressions, and context is the floating environment specified in <fenv.h>. This Technical Report specifies
how the C language implements these components.

0.3 The formats

IEEE 754-2008 specifies formats, in terms of their radix, exponent range, and precision (significand length), to
support general purpose decimal floating-point arithmetic. It specifies operation semantics in terms of values
and abstract representations of data (format members). It also specifies bit-level encodings for formats
intended for data interchange.

C99 specifies floating-point arithmetic using a two-layer organization. The first layer provides a specification
using an abstract model. The representation of a floating-point number is specified in an abstract form where
the constituent components of the representation are defined (sign, exponent, significand) but not the internals
of these components. In particular, the exponent range, significand size, and the base (or radix) are
implementation defined. This allows flexibility for an implementation to take advantage of its underlying
hardware architecture. Furthermore, certain behaviors of operations are also implementation defined, for
example in the area of handling of special numbers and in exceptions.

The reason for this approach is historical. At the time when C was first standardized, there were already
various hardware implementations of floating-point arithmetic in common use. Specifying the exact details of a
representation would make most of the existing implementations at the time not conforming.

C99 provides a binding to IEEE 754 by specifying an Annex F, IEC 60559 floating point arithmetic, and
adopting that standard by reference. An implementation may choose not to conform to IEEE 754 and indicates
that by not defining the macro __STDC_IEC_559__.This means not all implementations need to support
IEEE 754, and the floating-point arithmetic need not be binary.

This Technical Report specifies decimal floating-point arithmetic according to IEEE 754-2008, with the
constituent components of the representation defined. This is more stringent than the existing C99 approach
for the floating types. Since it is expected that all decimal floating-point hardware implementations will conform
to the revised IEEE 754, binding to this standard directly benefits both implementers and programmers.

This document is a preview generated by EVS

This document is a preview generated by EVS

TECHNICAL REPORT ISO/IEC TR 24732:2009(E)

© ISO/IEC 2009 – All rights reserved 1

Information technology — Programming languages, the ir
environments and system software interfaces — Exten sion for
the programming language C to support decimal float ing-point
arithmetic

1 Scope

This Technical Report specifies an extension to the programming language C, specified by the International
Standard ISO/IEC 9899:1999. The extension provides support for decimal floating-point arithmetic that is
intended to be consistent with the specification in IEEE 754-2008. Any conflict between the requirements
described here and that specification is unintentional. This Technical Report defers to IEEE 754-2008.

The binary floating-point arithmetic as specified in IEEE 754-2008 is not considered in this Technical Report.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1999, Programming languages — C

ISO/IEC 9899:1999/Cor.1:2001, Programming languages — C — Technical Corrigendum 1

ISO/IEC 9899:1999/Cor.2;2004, Programming languages — C — Technical Corrigendum 2

ISO/IEC TR 18037, Programming languages — C — Extensions to support embedded processors

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems 1)

IEEE 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic

IEEE 854-1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic

NOTE For reference materials relating to IEEE 754-2008 see [3].

A Decimal Floating-Point Specification, Schwarz, Cowlishaw, Smith, and Webb, in the Proceedings of the 15th
IEEE Symposium on Computer Arithmetic (Arith 15), IEEE, June 2001

1) Previously designated IEC 559:1989.

This document is a preview generated by EVS

This document is a preview generated by EVS

ISO/IEC TR 24732:2009(E)

2 © ISO/IEC 2009 – All rights reserved

3 Predefined macro name

The following macro name is conditionally defined by the implementation:

__STDC_DEC_FP__ The integer constant 200805L, intended to indicate conformance to this technical
report.

4 Decimal floating types

This Technical Report introduces three decimal floating types, designated as _Decimal32, _Decimal64 and
_Decimal128. The set of values of type _Decimal32 is a subset of the set of values of the type
_Decimal64; the set of values of the type _Decimal64 is a subset of the set of values of the type
_Decimal128.

Within the type hierarchy, decimal floating types are base types, real types and arithmetic types.

The types float, double, and long double are also called generic floating types for the purpose of this
Technical Report.

Note: C does not specify a radix for float, double and long double. An implementation can choose the
representation of float, double and long double to be the same as the decimal floating types. In any
case, the decimal floating types are distinct from float, double and long double regardless of the
representation.

Note: This Technical Report does not define decimal complex types or decimal imaginary types. The three
complex types remain as float _Complex, double _Complex and long double _Complex, and the
three imaginary types remain as float _Imaginary, double _Imaginary and long double
_Imaginary.

Suggested changes to C99:

Change the first sentence of 6.2.5#10:

[10] There are three generic floating types, designated as float, double and long double.

Add the following paragraphs after 6.2.5#10:

[10a] There are three decimal floating types, designated as _Decimal32, _Decimal64 and _Decimal128.
The set of values of the type _Decimal322) is a subset of the set of values of the type _Decimal64; the
set of values of the type _Decimal64 is a subset of the set of values of the type _Decimal128. Decimal
floating types are real floating types.

2) The 32-bit format is a storage only format in IEEE 754-2008.

This document is a preview generated by EVS

This document is a preview generated by EVS

http://grouper.ieee.org/groups/754/
http://www.validlab.com/754R/

