INTERNATIONAL STANDARD ISO 7992 Third edition 2015-08-01 # Iron ores for blast furnace feedstocks — Determination of reduction under load Minerais de fer pour charges de hauts fourneaux — Détermination de la réduction sous charge © ISO 2015, Published in Switzerland voduced or utilized c 've internet or an 've 180's memb All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | ntents | Page | |--|---| | eword | iv | | oduction | v | | Scope | 1 | | Normative references | 1 | | Terms and definitions | 1 | | | | | | | | 5.1 Sampling and sample preparation | 1 | 8 I | | | | | | | | | 8.3 Reduction | 4 | | Expression of results | 5 | | 9.1 Preparation of the reduction curve | 5 | | | | | 9.3 Calculation of the change in the height of the test bed at 80 % reduction (Δh | 80)6 | | 9.4 Repeatability and acceptance of test results | 6 | | | | | Verification | 6 | | ex A (normative) Flowsheet of the procedure for the acceptance of test results | 11 | | | | | | | | | Normative references Terms and definitions Principle Sampling, sample preparation and preparation of test portions 5.1 Sampling and sample preparation 5.2 Preparation of test portions Apparatus 6.1 General 7.1 General 7.2 Reducing gas 7.2.1 Composition 7.2.2 Purity 7.2.3 Flow rate 7.3 Heating and cooling gas 7.4 Temperature of the test portion Procedure 8.1 Number of determinations for the test 8.2 Chemical analysis 8.3 Reduction Expression of results 9.1 Preparation of the differential pressure at 80 % reduction (\Delta p80) 9.3 Calculation of the change in the height of the test bed at 80 % reduction (\Delta p80) 9.4 Repeatability and acceptance of test results Test report Verification Ex A (normative) Flowsheet of the procedure for the acceptance of test results Ex B (informative) Derivation of equation for reducibility | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 102, *Iron ore and direct reduced iron*, Subcommittee SC 3, *Physical testing*. This third edition cancels and replaces the second edition (ISO 7992:2007), of which it constitutes a minor revision to contemplate the outcomes of the studies on mass definition, as well as minor editorial improvements. #### Introduction This International Standard concerns one of a number of physical test methods that have been developed to measure various physical parameters and to evaluate the behaviour of iron ores, including reducibility, disintegration, crushing strength, apparent density, etc. This method was developed to provide a uniform procedure, validated by collaborative testing, to facilitate comparisons of tests made in different laboratories. The results of this test have to be considered in conjunction with other tests used to evaluate the quality of iron ores as feedstocks for blast furnace processes. for dard can. contract, or This International Standard can be used to provide test results as part of a production quality control system, as a basis of a contract, or as part of a research project. This document is a previous general ded by tills ## Iron ores for blast furnace feedstocks — Determination of reduction under load CAUTION — This International Standard may involve hazardous operations and equipment. This International Standard does not purport to address all of the safety issues associated with its use. It is the responsibility of the user of this International Standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to its use. #### 1 Scope This International Standard specifies a method to provide a relative measure for evaluating the structural stability of iron ores when reduced under conditions resembling those prevailing in the reduction zone of a blast furnace. This International Standard is applicable to lump ores and hot-bonded pellets. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 2597-1, Iron ores — Determination of total iron content — Part 1: Titrimetric method after tin(II) chloride reduction ISO 2597-2, Iron ores — Determination of total iron content — Part 2: Titrimetric methods after titanium(III) chloride reduction ISO 3082, Iron ores — Sampling and sample preparation procedures ISO 9035, Iron ores — Determination of acid-soluble iron(II) content — Titrimetric method ISO 11323, Iron ore and direct reduced iron — Vocabulary #### 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 11323 apply. #### 4 Principle The test portion is isothermally reduced in a fixed bed, at 1 050 °C, under static load, using a reducing gas consisting of CO, H_2 and N_2 , until a degree of reduction of 80 % is obtained. The differential gas pressure across the bed and the change in the test bed height are measured at 80 % reduction. #### 5 Sampling, sample preparation and preparation of test portions #### 5.1 Sampling and sample preparation Sampling of a lot and preparation of a test sample shall be in accordance with ISO 3082. The size range for pellets and lump ores shall be – 12,5 mm + 10,0 mm.