INTERNATIONAL STANDARD

ISO 16075-3

First edition 2015-08-15

Guidelines for treated wastewater use for irrigation projects —

Part 3:

Components of a reuse project for irrigation

Lignes directrices pour l'utilisation des eaux usées traitées en irrigation —

Partie 3: Éléments d'un projet de réutilisation en irrigation

© ISO 2015, Published in Switzerland

nroduced or utilized 'te internet or an or ISO's mem' All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Contents			
Fore	word		v
Intro	ductio	on	v i
1	Scon	pe	1
	$\sim 0^{-}$	mative references	
2			
3		ms, definitions, and abbreviated terms	
	3.1	General	
	3.3	Wastewater quality	
	3.4	Irrigation systems	
	3.5	Wastewater system related components	
	3.6	Abbreviated terms	8
4	Stora	rage reservoir	
	4.2	Reservoir types	
	4.3	Storage time	
	4.4	Problems and strategies	
5		litional treatment facilities	
	5.2 5.3	FiltrationAdditional disinfection	
6		tribution systems	
	6.1 6.2	Pumping stations Pipelines	
	6.3	Accessories	
	0.5	6.3.2 Valves	
		6.3.3 Blowoffs	13
		6.3.4 Flowmeters	
	<i>c</i>	6.3.5 Hydrants	
	6.4 6.5	Resistance of irrigation material to pH and fertilizers	
	6.6	Design and operation of distribution network to protect drinki	
	0.0	6.6.2 Stipulating a protective radius	
		6.6.3 Principles of TWW irrigation above (underground or s	surface) drinking
		water pipelines	15
		6.6.4 Principles of cross-connection	
		6.6.5 Principles of painting and marking TWW irrigation pi	
7		gation systems	
	7.1 7.2	Classification	
	1.2	Pressurized irrigation systems 7.2.1 Sprinkler systems	
		7.2.2 Micro-irrigation systems	
		7.2.3 Filtration	
		7.2.4 Automation of the irrigation	
	7.3	Instructions for preventive treatments, regular maintenance, a	
		pressurized irrigation system failures subject to TWW quality 7.3.1 General	
		7.3.2 Water quality parameters required for the treatment a	
		irrigation systems, for micro-sprinklers and drip irriga	
		7.3.3 Required equipment and treatments for micro-sprink	lers and drip
		irrigation systems	
		7.3.4 Restoring working order of an irrigation system after	ailure24
Anne	x A (in	nformative) Guidelines for injecting chlorine into drip irrigation	on systems25
Anne	x B (in	nformative) Guidelines for acid use in drip irrigation systems.	27

ISO 16075-3:2015(E)

ISO 16075-3:2015(E)	
Annex C (informative) Guidelines for injecting hydrogen peroxide into drip irrigation systems	29
Annex D (informative) Guidelines for sampling drip irrigation pipes	
Annex E (informative) Appropriated chemicals	
Bibliography	38
$O_{\mathcal{X}}$	
0,	
6,	
	1
iv © ISO 2015 – All rights reserv	ved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 282, Water reuse, Subcommittee SC 1, Treated wastewater use for irrigation.

ISO 16075 consists of the following parts, under the general title *Guidelines for treated wastewater use for irrigation projects:* ion

- Part 1: The basis of a reuse project for irrigation
- Part 2: Development of the project
- Part 3: Components of a reuse project for irrigation

The following parts are under preparation:

— Part 4: Monitoring

Introduction

The increasing water scarcity and water pollution control efforts in many countries have made treated municipal and industrial wastewater a suitable economic means of augmenting the existing water supply, especially when compared to expensive alternatives such as desalination or the development of new water sources involving dams and reservoirs. Water reuse makes it possible to close the water cycle at a point closer to cities by producing "new water" from municipal wastewater and reducing wastewater discharge to the environment.

An important new concept in water reuse is the "fit-to-purpose" approach, which entails the production of reclaimed water quality that meets the needs of the intended end-users. In the situation of reclaimed water for irrigation, the reclaimed water quality can induce an adaptation of the type of plant grown. Thus, the intended water reuse applications are to govern the degree of wastewater treatment required and inversely, the reliability of wastewater reclamation processes and operation.

Treated wastewater can be used for various non-potable purposes. The dominant applications for the use of treated wastewater (also referred to as reclaimed water or recycled water) include agricultural irrigation, landscape irrigation, industrial reuse, and groundwater recharge. More recent and rapidly growing applications are for various urban uses, recreational, and environmental uses, and indirect and direct potable reuse.

Agricultural irrigation was, is, and will likely remain the largest reuse water consumer with recognized benefits and contribution to food security. Urban water recycling, landscape irrigation in particular, is characterized by fast development and will play a crucial role for the sustainability of cities in the future including energy footprint reduction, human well-being, and environmental restoration.

It is worth noting again that the suitability of treated wastewater for a given type of reuse depends on the compatibility between the wastewater availability (volume) and water irrigation demand throughout the year, as well as on the water quality and the specific use requirements. Water reuse for irrigation can convey some risks for health and environment depending on the water quality, the irrigation water application method, the soil characteristics, the climate conditions, and the agronomic practices. Consequently, the public health and potential agronomic and environmental adverse impacts are to be considered as priority elements in the successful development of water reuse projects for irrigation. To prevent such potential adverse impacts, the development and application of international guidelines for the reuse of treated wastewater is essential.

The main water quality factors that determine the suitability of treated wastewater for irrigation are pathogen content, salinity, sodicity, specific ion toxicity, other chemical elements, and nutrients. Local health authorities are responsible for establishing water quality threshold values depending on authorized uses and they are also responsible for defining practices to ensure health and environmental protection taking in account local specificities.

From an agronomic point of view, the main limitation in using treated wastewater for irrigation arises from its quality. Treated wastewater unlike water supplied for domestic and industrial purposes contains higher concentrations of inorganic suspended and dissolved materials (total soluble salts, sodium, chloride, boron, and heavy metals), which can damage the soil and irrigated crops. Dissolved salts are not removed by conventional wastewater treatment technologies and appropriate good management, agronomic, and irrigation practices are intended to be used to avoid or minimize potential negative impacts.

The presence of nutrients (nitrogen, phosphorus, and potassium) can become an advantage due to possible saving in fertilizers. However, the amount of nutrients provided by treated wastewater along the irrigation period is not necessarily synchronized with crop requirements and the availability of nutrients depends on the chemical forms.

This guideline provides guidance for healthy, hydrological, environmental and good operation, monitoring, and maintenance of water reuse projects for unrestricted and restricted irrigation of agricultural crops, gardens, and landscape areas using treated wastewater. The quality of supplied treated wastewater has

to reflect the possible uses according to crop sensitivity (health-wise and agronomy-wise), water sources (the hydrologic sensitivity of the project area), the soil, and climate conditions.

This guideline refers to factors involved in water reuse projects for irrigation regardless of size, location, and complexity. It is applicable to intended uses of treated wastewater in a given project even if such uses will change during the project's lifetime as a result of changes in the project itself or in the applicable legislation.

The key factors in assuring the health, environmental, and safety of water reuse projects in irrigation are the following:

- meticulous monitoring of treated wastewater quality to ensure the system functions as planned and designed;
- maintenance and design instructions of the irrigation systems to ensure their proper long-term operation;
- compatibility between the treated wastewater quality, the distribution method, and the intended soil and crops to ensure a viable use of the soil and undamaged crop growth;
- ed v.
 Jr Suri. compatibility between the treated wastewater quality and its use to prevent or minimize possible contamination of groundwater or surface water sources.

This document is a previous generated by tills

Guidelines for treated wastewater use for irrigation projects —

Part 3:

Components of a reuse project for irrigation

1 Scope

This part of ISO 16075 covers the system's components needed for the use of TWW for irrigation which relate to various pressure and open irrigation systems specifically drip irrigation as this method represents an efficient method of water delivery and water saving. Despite the fact that water quality and filtration of treated wastewater (herein TWW) using drip irrigation are critical, open irrigation systems are more popular and are frequently used for irrigation with TWW and therefore are covered in this part of ISO 16075.

This part of ISO 16075 will cover the issues related to the main components of a TWW irrigation project, including the following:

- pumping station;
- storage reservoirs;
- treatment facilities (for irrigation purposes): filtration and disinfection;
- distribution pipeline network;
- water application devices: irrigation system components and treatment.

None of the parts of this part of ISO 16075 are intended to be used for certification purposes.

2 Normative references

There are no normative references.

3 Terms, definitions, and abbreviated terms

3.1 General

3.1.1

aquifer

underground layer of water-bearing permeable rock or unconsolidated materials (gravel, sand, or silt) from which groundwater can be extracted

3.1.2

background water

freshwater (3.1.10) supplied for domestic, institutional, commercial, and industrial use from which wastewater (3.1.22) is created

3.1.3

barrier

any means including physical or process steps that reduces or prevents the risk of human infection by preventing contact between the TWW and the ingested produce or other means that, for example, reduces the concentration of microorganisms in the TWW or prevents their survival on the ingested produce