INTERNATIONAL STANDARD

1SO/IEC 28360

Third edition 2015-09-01

Information technology — Office equipment — Determination of chemical emission rates from electronic equipment

ination ronique Technologies de l'information — Équipement de bureau —

Reference number ISO/IEC 28360:2015(E)

© ISO/IEC 2015

ced or utilized otherwise ¹ an intranet, without protection of the country of the r All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents Page Forewordv Introduction......vi Scope......1 2 Conformance1 3 4 Symbols and abbreviated terms5 5 5.1 Abbreviated terms5 5.2 6 Method overview7 ETC requirements......9 7.1 Construction materials9 7.2 Air tightness......9 7.3 Air mixing efficiency9 8 Determination method9 8.1 Test conditions......9 8.1.1 General9 Operating temperature and relative humidity (rH).....9 8.1.2 Air exchange rate (n)......9 8.1.3 Air velocity9 8.1.4 8.1.5 Sampled air flow......9 8.2 Handling of EUT and ETC.....9 8.2.1 Selection and storage of EUT9 8.2.2 ETC purging10 8.2.3 8.2.4 Background concentrations (Cbg)10 8.2.5 EUT unpacking10 8.2.6 Preparation of the EUT before testing......10 EUT installation11 8.2.7 8.2.8 EUT operation during test12 VOC, carbonyl compounds13 8.3 8.3.1 8.3.2 8.3.3 Emission rate calculation14 8.4 Ozone......15 8.4.1 Analyser and sampling line requirements......16 8.4.2 8.4.3 Emission rate calculation16 8.5 Particulate matter17 8.5.1 Weighing and Filter conditioning18 8.5.2 Sampling18 8.5.3 Emission rate calculation18 8.6 Fine and Ultrafine Particles (FP and UFP)19 8.6.1 8.6.2 8.6.3 Calculation 22 9

ISO/IEC 28360:2015(E)

A.1 A.2	Monochrome print pattern 5% coverage
Annex B.1 B.1.1	B (normative) Preparatory AMS Test Procedures
B.1.2 B.2 B.2.1	Particle number concentration range measurements
B.2.2 B.2.3	Zero Check
B.3 B.3.1	Procedures for Operational readiness test of CPC
C.1 C.2	C (informative) Emission rate model for EUT using consumables
C.3 C.4 C.5	General mass balance and concentration equations
C.6 C.7 C.8	Emission during operating phase
C.9	Model for RAL-UZ 171 Option42
	raphy

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

ISO/IEC 28360 was prepared by Ecma International (as ECMA-328) and was adopted, under a special "fast-track" procedure, by Joint Technical Committee ISO/IEC JTC 1, Information technology, in parallel with its approval by national bodies of ISO and IEC.

This third edition cancels and replaces the second edition (ISO 28360:2012), which has been technically revised.

Introduction

Globally, governmental agencies, academic institutions, environmental organizations and manufacturers have developed methods to determine chemical emissions from electronic equipment. These attempts however, resulted in a range of tests from which the results are not necessarily comparable, either qualitatively or quantitatively.

Following the publications of the 1st edition of ECMA-328 and the "Test method for the determination of emissions from Hard Copy Devices" (RAL-UZ 122), experts from the BAM and Ecma have collaborated to harmonise methods to determine the chemical emission rates from ICT & CE equipment in this 2nd edition.

In addition to stricter test procedures, the second edition uses generalised emission formulae, and their derivations developed in Annex C, to calculate emission rates from concentrations of analytes that are measured in Emission Test Chambers.

The 3rd edition was fully aligned with the 1st edition of ISO/IEC 28360:2007 adopted under ISO/IEC JTC 1's fast track procedure and published in September 2007.

In addition, the 4th edition fixes a number of errata on ISO/IEC 28360:2007 that JTC 1/SC 28 identified.

Following the publications of the 4th edition of ECMA-328 and the "Test method for the determination of emissions from Hard Copy Devices" (RAL-UZ 122), experts from the BAM, WKI, JBMIA and Ecma have collaborated to harmonise methods to determine the Fine Particle (FP) and Ultrafine Particle (UFP) emissions from hard copy devices in the 5th edition.

The 6th edition of ECMA-328 was aligned with the 2nd edition of ISO/IEC 28360:2012, and it added a new ozone calculation method. "Test method for the determination of emission from Hard Copy Devices" (RAL-UZ 122) has been replaced by "Test method for the determination of emission from Hard Copy Devices" (RAL-UZ 171) published in January 2013. Therefore, "RAL-UZ 122 option" is replaced with "RAL-UZ 171 option" in the 6th edition.

Information technology — Office equipment — Determination of chemical emission rates from electronic equipment

1 Scope

This International Standard specifies methods to determine chemical emission rates of <u>Analyte</u> from <u>ICT & CE</u> <u>equipment</u> during intended operation in an Emission Test Chamber (<u>ETC</u>).

The methods comprise preparation, sampling (or monitoring) in a controlled ETC, storage and analysis, calculation and reporting of emission rates.

This International Standard includes specific methods for equipment using consumables, such as printers, and equipment not using consumables, such as monitors and PC's. Annex A specifies monochrome and colour print patterns for use in the operating phase of EUT using consumables (e.g. paper).

Examples of EUT that do not use consumables are:

- Monitors and TV sets (CRT, Plasma, LCD, Rear projector, Beamer).
- Video (VCR, DVD Player/Recorder, Camcorder).
- SAT Receiver (Set-Top Box).
- Audio units (CD Player/Recorder, Home theatre Systems, Audio Home Systems, Micro-/Mini, Midi Systems, Amplifier, Receiver).
- Portable Audio (CD Player, MP 3 Player, Radio recorder, Clock radio etc).
- Computer (desktop, tower, server), portable computers (Notebooks).

Emission rates from EUT using consumables may also be determined according to additional requirements identified by "RAL-UZ 171 Option".

Calculations use the generalised model and approximations thereof as developed in Annex C.

The emission rates determined with this method may be used to compare equipment in the same class.

Predictions of "real indoor" *concentrations* from the determined *emission rates* are outside the scope of this International Standard.

2 Conformance

Determinations of emission rates and total number of emitted particles conform to this International Standard when:

- Executed using a Quality Assurance Project Plan, Quality Assurance and Quality Control as specified in ISO 16000-9;
- 2. Tested in a controlled ETC as specified in Clause 7;
- 3. Sampled/monitored and calculated as specified in Clause 8 and Annex B;

4. Reported as specified in Clause 9.

For EUT using consumables, determinations according to additional requirements identified by "RAL-UZ 171 Option" herein conform to the RAL-UZ 171 Option.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ECMA-74, Measurement of Airborne Noise emitted by Information Technology and Telecommunications Equipment

ISO 554:1976, Standard atmospheres for conditioning and/or testing - Specifications

ISO 13655:1996, Graphic technology – Spectral Measurements and colorimetric computation for graphic arts images

ISO 16000-3:2001, Indoor air – Part 3: Determination of formaldehyde and other carbonyl compounds – Active sampling method

ISO 16000-6:2011, Indoor air – Part 6: Determination of volatile organic compounds in indoor and chamber air by active sampling on TENAX TA sorbent, thermal desorption and gas chromatography using MS/FID

ISO 16000-9:2006, Indoor air – Part 9: Determination of the emission of volatile organic compounds from building products and furnishing – Emission test chamber method

ISO 16017-1:2000, Indoor ambient and workplace air - Sampling and analysis of volatile organic compounds by sorbent tube / thermal desorption / capillary gas chromatography – Part 1: Pumped sampling

EN 55013:2013, Sound and Television Broadcast Receivers and associated equipment – Radio disturbance characteristics – Limits and methods for measurement

CIE 15:2004, Commission Internationale de l'Eclairage – Colorimetry, 3rd edition

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply

4.1

averaged concentration time series

simple Moving Average of total particle number concentration (Cp) over 31±3 seconds

4.2

averaged ozone concentration time series

Simple Moving Average of ozone concentration (Co3) over 80±5 seconds

4.3

aerosol

suspension of fine solid particles and/or liquid droplets in a gas

4.4

aerosol measuring system

AMS

device for measuring the total number concentration of aerosol particles within a size range at a certain frequency