INTERNATIONAL **STANDARD**

ISO 11296-7

> First edition 2011-11-01

Plastics piping systems for renovation of underground non-pressure drainage and sewerage networks —

Part 7: Lining with spirally-wound pipes

Systèmes de canalisations en plastique pour la rénovation des réseaux de branchements et de collecteurs d'assainissement enterrés sans a par enro.

Partie 7: Tubage par enroulement hélicoïdal avec espace annulaire

© ISO 2011

fuced or utilized in any for viron either ISO at the ? All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents Page Forewordiv Introduction v 1 2 Normative references 1 3 Terms and definitions 2 4.1 Abbreviated terms 3 4.2 Pipes at the "M" stage _______3 5 5.1 Materials 3 5.2 General characteristics 4 5.3 Material characteristics 4 Geometric characteristics 5 5.4 5.5 Mechanical characteristics 6 5.6 Physical characteristics 6 5.7 Jointing 6 Marking......6 5.8 6 Ancillary components7 7 8 8.1 Materials......7 General characteristics 7 8 2 8.3 Material characteristics 7 Geometric characteristics 7 84 8 5 Mechanical characteristics 7 86 8.7 Additional characteristics 8 8.8 Preparation of samples 8 8.9 Adhesives 8 9 Preparatory work 8 9.1 9.2 9.3 Equipment 8 9.4 Installation 9 Process-related inspection and testing ______10 9.5 9.6 Lining termination 10 Reconnecting to existing manholes and laterals10 9.7 9.8 Final inspection and testing10 9.9 Documentation 10 Annex A (normative) Spirally-wound pipe — Test method for watertightness in a deflected condition.. 11 Annex B (informative) Examples of methods for reconnecting and sealing laterals to SWO pipe......14 Bibliography.....

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 11296-7 was prepared by Technical Committee ISO/TC 138, *Plastics pipes, fittings and valves for the transport of fluids*.

ISO 11296 consists of the following parts, under the general title *Plastics piping systems for renovation of underground non-pressure drainage and sewerage networks*:

- Part 1: General
- Part 3: Lining with close-fit pipes
- Part 4: Lining with cured-in-place pipes
- Part 7: Lining with spirally-wound pipes

Lining with continuous pipes is to form the subject of a Part 2 and lining with discrete pipes is to form the subject of a Part 5.

Introduction

The System Standard, of which this is Part 7, specifies the requirements for plastics piping systems of various materials used for renovation of existing pipelines in a specified application area. System Standards for renovation specify procedures for the following applications:

- plastics piping systems for renovation of underground non-pressure drainage and sewerage networks (this application);
- plastics piping systems for renovation of underground drainage and sewerage networks under pressure;
- plastics piping systems for renovation of underground water supply networks;
- plastics piping systems for renovation of underground gas supply networks.

These System Standards are distinguished from those for conventionally installed plastics piping systems because they set requirements for certain characteristics in the as-installed condition, after site processing. This is in addition to specifying requirements for plastics piping system components, as manufactured.

Each of the System Standards comprises a Part 1 (general) and all applicable renovation technique family-related parts from the following:

- Part 2: Lining with continuous pipes;
- Part 3: Lining with close-fit pipes;
- Part 4: Lining with cured-in-place pipes;
- Part 5: Lining with discrete pipes;
- Part 7: Lining with spirally-wound pipes.

The requirements for any given renovation technique family are given in Part 1, applied in conjunction with the relevant other part. For example, Parts 1 and 2 specify the requirements relating to lining with continuous pipes. For complementary information, see ISO 11295. Not all technique families are applicable to every area of application and this is reflected in the part numbers included in each System Standard.

A consistent structure of clause headings has been adopted for all parts to facilitate direct comparisons across renovation technique families.

Figure 1 shows the common structure and the relationship between ISO 11296 and the System Standards for other application areas.

© ISO 2011 - All rights reserved

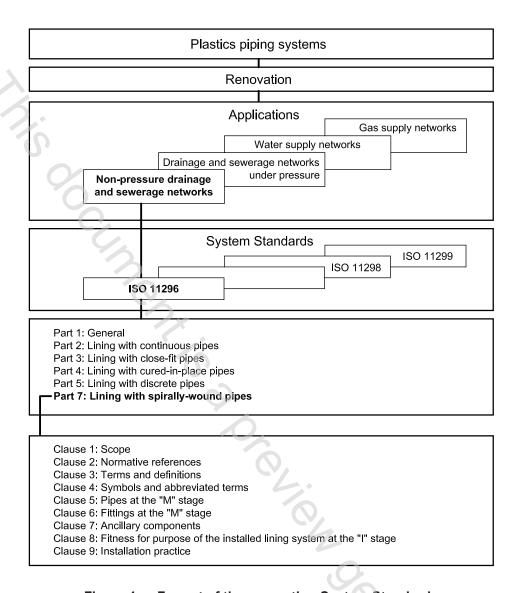


Figure 1 — Format of the renovation System Standards

Plastics piping systems for renovation of underground non-pressure drainage and sewerage networks —

Part 7:

Lining with spirally-wound pipes

1 Scope

This part of ISO 11296, in conjunction with Part 1, specifies requirements and test methods for pipes which are formed on site by spirally winding and jointing a pre-manufactured profiled plastics strip, or a profiled plastics strip and integral locking joiner strip, and used for the renovation of underground non-pressure drainage and sewerage networks.

It applies to spirally-wound pipes of fixed or variable diameter installed by one of two methods.

The first method employs a dedicated winding machine in front of the open end of an existing pipeline, e.g. in a manhole. The pipes thus formed are simultaneously inserted into the existing pipeline by the winding forces, and by certain techniques can also be expanded in diameter after or during insertion.

The second method employs a dedicated winding machine which forms the pipe as it traverses the existing pipeline from one manhole to the next.

It covers spirally-wound pipes of fixed or variable diameter made of profiled plastics strips, with or without steel stiffening elements, of unplasticized poly(vinyl chloride) (PVC-U) with integral locking mechanism or high density polyethylene (HDPE) with integrally welded joints.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 37, Rubber, vulcanized or thermoplastic — Determination of tensile stress-strain properties

ISO 179-1, Plastics — Determination of Charpy impact properties — Part 1: Non-instrumented impact test

ISO 306, Plastics — Thermoplastics materials — Determination of Vicat softening temperature (VST)

ISO 527-1, Plastics — Determination of tensile properties — Part 1: General principles

ISO 527-2, Plastics — Determination of tensile properties — Part 2: Test conditions for moulding and extrusion plastics

ISO 4427 (all parts), Plastics piping systems — Polyethylene (PE) pipes and fittings for water supply

ISO 4435, Plastics piping systems for non-pressure underground drainage and sewerage — Unplasticized poly(vinyl chloride) (PVC-U)

ISO 4948-2, Steels — Classification — Part 2: Classification of unalloyed and alloy steels according to main quality classes and main property or application characteristics

ISO 6259-1, Thermoplastics pipes — Determination of tensile properties — Part 1: General test method

ISO 11296-7:2011(E)

ISO 7619-1, Rubber, vulcanized or thermoplastic — Determination of indentation hardness — Part 1: Durometer method (Shore hardness)

ISO 9967, Thermoplastics pipes — Determination of creep ratio

ISO 9969, Thermoplastics pipes — Determination of ring stiffness

ISO 11296-1, Plastics piping systems for renovation of underground non-pressure drainage and sewerage networks — Part 1: General

ISO 11296-4:2009, Plastics piping systems for renovation of underground non-pressure drainage and sewerage networks — Part 4: Lining with cured-in-place pipes

EN 1979, Plastics piping and ducting systems — Thermoplastics spirally-formed structured-wall pipes — Determination of the tensile strength of a seam

EN 14364:2006, Plastics piping systems for drainage and sewerage with or without pressure — Glass-reinforced thermosetting (GRP) plastics based on unsaturated polyester resin (UP) — Specifications for pipes, fittings and joints

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 11296-1 and the following apply.

3.1

spirally-wound pipe

pipe formed by continuously winding and joining a profiled plastics strip, or a profiled plastics strip and integral locking joiner strip

3.2

seam

joint between adjacent profiled plastics strips formed by an integral locking mechanism and/or seam sealant

3.3

integral locking mechanism

mechanical interlock achieved by suitable design of the edges of the extruded profile

3.4

seam sealant

thermoplastic or adhesive material added to the integral locking mechanism or profiled plastics strip surface to make the seam leaktight

3.5

close fit

location of the outside of the installed liner relative to the inside of the existing pipeline, which may either be an interference fit or include a small annular gap resulting from shrinkage and tolerances only

NOTE Tolerances in the above definition refers to offsets and deformities in the existing pipeline. Spirally-wound liners are not subject to shrinkage.

3.6

close-fit spirally-wound pipe

continuous lining pipe wound from a profiled plastics strip, with or without steel reinforcement, expanded or wound in place to achieve a close fit to the existing pipeline