TECHNICAL SPECIFICATION SPÉCIFICATION TECHNIQUE TECHNISCHE SPEZIFIKATION

CLC/TS 50238-2

July 2010

ICS 29.280; 45.060.10

English version

Railway applications Compatibility between rolling stock and train detection systems Part 2: Compatibility with track circuits

Applications ferroviaires -Compatibilité entre le matériel roulant et les systèmes de détection des trains -Partie 2: Compatibilité avec les circuits de voie Bahnanwendungen -Kompatibilität zwischen Fahrzeugen und Gleisfreimeldesystemen -Teil 2: Kompatibilität mit Gleisstromkreisen

This Technical Specification was approved by CENELEC on 2010-07-07.

CENELEC members are required to announce the existence of this TS in the same way as for an EN and to make the TS available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

Foreword

This Technical Specification was prepared by SC 9XA, Communication, signalling and processing systems, of Technical Committee CENELEC TC 9X, Electrical and electronic applications for railways.

It was circulated for voting in accordance with the Internal Regulations, Part 2, Subclause 11.3.3.3 and was approved by CENELEC as CLC/TS 50238-3 on 2010-07-09.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent rights.

The following date was fixed:

latest date by which the existence of the CLC/TS has to be announced at national level

(doa)

2011-01-07

This Technical Specification is intended to become Part 2 of the series EN/TS 50238 published under the title 'Railway applications - Compatibility between rolling stock and train detection systems'. The series consists of:

- Part 1: General ¹⁾
- Part 2: Compatibility with track circuits (this document)
- Part 3: Compatibility with axle counters.

¹) Existing EN 50238:2003 was renumbered EN 50238-1 once the voting procedure on Parts 2 & 3 was closed.

Contents

Intro	duct	ion	6
1	Sc	ope	7
2	No	ormative references	7
3	Te	erms, definitions and abbreviations	8
	3.1	Terms and definitions	8
	3.2	Abbreviations	9
4	Ge	eneral aspects of interference current limits for RST	10
	4.1	Derivation of interference current limits for RST	10
	4.2	Application of Interference current limits to RST design	10
	4.3	System definition	
5	Εv	valuation methods	12
	5.1	General	12
	5.2	Selected evaluation method	13
	5.3	Derivation of the interference current limits for RST and margins	13
	5.4	Criteria for compatibility	14
6	De	efined interference current limits for RST for use under interoperability	
	re	gulations	
	6.1	Preferred track circuits for DC traction	
	6.2	Preferred track circuits for RST for 16,7 Hz traction	
	6.3	Preferred track circuits for RST for 50 Hz traction	
7	Te	est specifications for RST interference measurements	
	7.1	Purpose of compatibility tests	
	7.2	Test equipment requirements (hardware)	
8	Tr	ain interference analysis and evaluation methods	
	8.1	Evaluation method	
	8.2	Requirements for on-train interference monitoring and control	
	8.3	Documentation	
Defi		1s	
A .1		GSK3	
A.2	U	GSK95	25
A .3		GS 46 / FTGS 917	
A.4		RS	
A.5	Ja	de	26
A.6		oded track circuits for DC traction	
A.7		gicode	
A .8	CE	BDAC	28
A.9		referred track circuit in Czech Republic	
A.10		M71 C, UM71 CB, UM71 C TVM and SJB	
A.11		C track circuits in UK	
A.12		BI Track 200 (TI21)	
A.13		33000	
A.14		S2000 / FS 2500 / FS 2550 / FS 5000	
A.15		ack circuits of 95 Hz and 105 Hz in Norway	
A.16		RK 10470	

B.1	Supply frequency	33
B.2	Infrastructure characterisation	33
B.3	Power supply impedance	34
B.4	Approximate calculation of the lowest power supply resonance frequency	34
B.5	Simplified method to handle resonance effects with roof cables	35
B.6	Return current transfer function	
C.1	Interface voltage/current measurement	38
C.2	Voltage resonance graphs for 15 kV 16,7 Hz network	38
C.3	Voltage resonance graphs for 25 kV, 50 Hz network	
C.4	Voltage resonance graphs for 1 500 V DC network	
C.5	Voltage resonance graphs for 3 000 V DC network	40
Figure	s	
Figui	re 1 – Examples of IUs	9
Figui	re 2 - System configuration considered for interference	11
Figui	re 3 – Time domain method	13
_	re 4 - Margins for track circuit interference current limits	
_	e 5 - Superposition factors	
_	e B.1 - Infrastructure characterisation	
_	e B.2 - Power supply admittance	
_	e B.3 – Resonance effects for various RST positions	
_	re B.4 – Resonance effects for various RST input capacitance	
	e C.1 - Voltage resonance graph for 15 kV 16,7 Hz network	
	e C.2 - Voltage resonance graphs for 25 kV 50 Hz network	
_	e C.3 - Voltage resonance graphs for 1 500 V DC network	
_	e C.4 - Impedance graphs for 3 000 V DC network	
Tables		
Table	e 1 - Reduction factors for capacitive input impedance	19
	2 - Summation categories	
	e 3 - K factor values	
	e A.1 - UGSK3	
Table	e A.2 – UGSK95	25
Table	e A.3 - FTGS	25
	A.4 - GRS	
	A.5 - GRS - limits due to rectifying traction supply	
	e A.6 - Jade 25 kV, 50 Hz lines	
	e A.7 - Jade DC lines	
	e A.8 - Limits for BACC and CDB 83,3 Hz	
	A.9 - Digicode	
	A.10 - CBDAC	
	A.11 - DC Traction	
		20

ble A.13 - UM 71 CB and UM71 C TVM SEI	
ble A.14 - DC track circuits in UK	
ble A.15 - EBI Track 200 (TI21)	
ble A.16 - FS3000 3 kV, DC lines	
ble A.17 - FS3000 25 kV, 50 Hz lines	31
ble A.18 - FS2000 / FS 2500 / FS 2550 / FS 5000 3 kV, DC lines	31
ble A.19 - Track circuits of 95 Hz and 105 Hz in Norway	31
ble A.20 – JRK 10470	32
ble B.1 - Supply frequency	33
ble B.2 - Capacitance parameters for electrified lines	35
ble B.3 - No-load supply voltage levels	35
ble C.1 - Measurement parameters	38
ble C.2 - Measurement frequencies	38
8	
<u></u>	
.0	
$\Theta_{\mathcal{X}}$	
	6
	`_

Introduction

This Technical Specification is being developed to permit compliance with the Interoperability Directives (High Speed and Conventional).

This Part 2 of the series defines

- a set of interference current limits for rolling stock based on defined track circuits,
- measurement methods to verify rolling stock interference current emissions and demonstrate rack tibility re. compatibility with the track circuits,
- traceability of compatibility requirements (types of track circuit and associated limits).

1 Scope

This Technical Specification defines, for the purpose of ensuring compatibility between rolling stock and track circuits the limits for conducted interference from rolling stock and the measurement method for verifying conformity of rolling stock to these limits.

The interference limits are only applicable to interoperable rolling stock which is intended to run on lines exclusively equipped with preferred track circuit listed in this Technical Specification. National Notified Technical Rules are still to be used in all cases, where the line over which the rolling stock is intended to run is equipped with any type of older version or non-preferred track circuits that are not listed in this Technical Specification. However, the rolling stock test methodology (infrastructure conditions, test configurations, operational conditions, etc.) presented in this Technical Specification is also applicable to establish compatibility with non-preferred track circuits.

This Technical Specification gives guidance on the derivation of interference current limits specified for rolling stock and defines measurement methods and evaluation criteria.

This Technical Specification defines

- a set of interference current limits for RST (Rolling Stock) applicable for each of the following types of traction system:
 - DC (750 V, 1,5 kV and 3 kV);
 - 16,7 Hz AC;
 - 50 Hz AC.
- methodology for the demonstration of compatibility between rolling stock and track circuits,
- measurement method to verify interference current limits and evaluation criteria.

NOTE 1 The basic parameters of track circuits associated with the interference current limits for RST are not in the scope of this Technical Specification.

NOTE 2 Any phenomena linked to traction power supply and associated protection (over voltage, short-circuit current, under- and over-voltage if regenerative brakes are used) is part of the track circuit design and outside the scope of this Technical Specification.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN/TR 50126 series, Railway applications - The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS)

EN 50128, Railway applications - Communication, signalling and processing systems - Software for railway control and protection systems

EN 50129, Railway applications - Communication, signalling and processing systems - Safety related electronic systems for signalling

EN 50163, Railway applications - Supply voltages of traction systems

EN 50238, Railway applications - Compatibility between rolling stock and train detection systems

EN 50388, Railway applications - Power supply and rolling stock - Technical criteria for the coordination between power supply (substation) and rolling stock to achieve interoperability

CLC/TR 50507, Railway applications - Interference limits of existing track circuits used on European railways

UIC 550, Power Supply Installations for Passenger Stock

ENV 13005, Guide to the expression of uncertainty in measurements