TECHNICAL SPECIFICATION SPÉCIFICATION TECHNIQUE TECHNISCHE SPEZIFIKATION

CLC/TS 61643-12

August 2006

ICS 29.240;29.240.10

English version

Low-voltage surge protective devices Part 12: Surge protective devices connected to low-voltage power systems – Selection and application principles (IEC 61643-12:2002, modified)

Parafoudres basse tension Partie 12: Parafoudres connectés aux réseaux de distribution basse tension – Principes de choix et d'application (CEI 61643-12:2002, modifiée) Überspannungsschutzgeräte für Niederspannung Teil 12: Überspannungsschutzgeräte für den Einsatz in Niederspannungsanlagen – Auswahl und Anwendungsgrundsätze (IEC 61643-12:2002, modifiziert)

This Technical Specification was approved by CENELEC on 2006-04-15.

CENELEC members are required to announce the existence of this TS in the same way as for an EN and to make the TS available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 2006 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Foreword

The text of the International Standard IEC 61643-12:2002, prepared by SC 37A, Low-voltage surge protective devices, of IEC TC 37, Surge arresters, together with the common modifications prepared by CLC 37A was submitted to the formal vote. The combined text was approved by CENELEC as CLC/TS 61643-12 on 2006-04-15.

The following date was fixed:

latest date by which the existence of the CLC/TS has to be announced at national level

2006-07-01 (doa)

Annex ZA has been added by CENELEC.

CONTENTS

Intr	oducti	ion		6
Key	vs to u	Indersta	nding the structure of this standard	6
List	of va	riables	and abbreviations used in this standard	8
1	Scop	e		10
2	Norm	ative re	eferences	10
3	Defin	itions	<u>}</u>	10
4	Syste	ems and	equipment to be protected	15
	4.1	Low-vo	pltage power distribution systems	15
		4.1.1	Lightning overvoltages and currents	16
		4.1.2	Switching overvoltages	16
		4.1.3	Temporary overvoltages U _{TOV}	17
	4.2	Charac	cteristics of the equipment to be protected	18
5	Surg	e protec	tive devices	18
	5.1	Basic f	unctions of SPDs	18
	5.2	Additio	nal requirements	18
	5.3	Classif	ication of SPDs	19
		5.3.1	SPD: classification	19
		5.3.2	Typical design and topologies	19
	5.4	Charac	cteristics of SPDs	20
		5.4.1	Service conditions described in EN 61643-11	20
		5.4.2	List of parameters for SPD selection	21
	5.5	Additio	nal information on characteristics of SPDs	22
		5.5.1	Information related to power-frequency voltages	22
		5.5.2	Information related to surge currents	22
		5.5.3	Information related to voltage protection level provided by SPDs	24
		5.5.4	Information related to SPD failure modes	25
		5.5.5	Information related to short-circuit withstand	26
		5.5.6	Information related to load current I_{L} and to voltage drop (for two- port SPDs or one-port SPDs with separate input and output terminals)	26
		5.5.7	Information related to change of characteristics of SPDs	26
6	Appli	cation c	of SPDs in low-voltage power distribution systems	26
	6.1	Installa	ation and its effect on the protection given by SPDs	26
	•••	6.1.1	Possible modes of protection and installation	27
		6.1.2	Influence of the oscillation phenomena on the protective distance	30
		6.1.3	Influence of the connecting lead length	30
		6.1.4	Need for additional protection	32
		6.1.5	Consideration regarding location of the SPD depending on the classes of test	33
		6.1.6	Protection zone concept	33
	6.2	Selecti	on of SPD	33
		6.2.1	Selection of U_c , U_T and $I_n/I_{imp}/I_{max}/U_{oc}$ of the SPD	35
		System	n configuration of distribution network	35
		6.2.2	Protective distance	37
		6.2.3	Prospective life and failure mode	37
		6.2.4	Interaction between SPDs and other devices	38
		6.2.5	Choice of the voltage protection level Up	39

6.2.6 Co-ordination between the chosen SPD and other SPDs	. 39
6.3 Characteristics of auxiliary devices	.41
6.3.1 Disconnecting devices	.41
6.3.2 Event counters	.42
6.3.3 Status indicator	.42
7 Risk analysis	.42
8 Co-ordination where equipment has both signalling and power terminals	.44
Annex A (informative) Examples of various SPD technologies	.45
A.1 Examples of internal circuits for one port and two port SPDs	.45
A.2 Response of SPDs to a combination wave impulse	. 47
Annex B (informative) Explanation of testing procedures used in EN 61643-11	. 48
B.1 Determination of U_{res} for SPDs tested in accordance with class I and class II tests	.48
B.2 Impulse waveshape for assessment of U_{res}	.48
B.3 Influence of a back filter on determination of Ures	.48
B.4 Operating duty test for SPDs	.49
B.5 TOV failure test	.50
B.6 Differences in the testing conditions of Type 1 (test class I), 2 (test class II) and 3 (tests class III) SPDs	.50
 B.7 short-circuit withstand capability test in conjunction with overcurrent protection (if any). 51 	
Annex C (informative) Partial lightning current calculations	. 52
Annex D (informative) Examples of application of TS 61643-12	.54
D.1 Domestic application	.54
D.2 Industrial application	.56
D.3 Presence of a lightning protection system	.60
Annex E (informative) Examples of application of the risk analysis	.61
Annex F (informative) Consideration for SPDs when Type 1 SPDs are to be applied	.64
Annex G (informative) Immunity vs insulation withstand	.65
Annex H (informative) Examples of SPD installation in power distribution boards in some countries	.67
Anney 7A (normative) Normative references to international publications with their	

Annex ZA (normative) Normative references to international publicati corresponding European publications	ons with their
Bibliography	
Figure 1 Examples of components and combinations of components	

Figure 1 – Examples of components and combinations of components	20
Figure 2 – Relationship between U_p , U_0 , U_c and U_{cs}	22
Figure 3 – Typical curve of Ures versus I for ZnO varistors	24
Figure 4 – Typical curve for a spark gap	25
Figure 5 – Flowchart for SPD application	27
Figure 6 – Connection Type 1	28
Figure 7 – Connection Type 2	29
Figure 8 – Influence of SPD connecting lead lengths	31
Figure 9 – Need for additional protection	32
Figure 10 – Flowchart for the selection of an SPD	34
Figure 11 – Typical use of two SPDs – Electrical drawing	40

Figure A.1 Examples of one-port SPDs	45
Figure A.2 Examples of two-port SPDs	46
Figure A.3 Response of one-port and two-port SPDs to a combination wave impulse	47
Figure C.1 – Simple calculation of the sum of partial lightning currents into the power distribution system	52
Figure D.1 – Domestic installation	55
Figure D.2 – Industrial installation	58
Figure D.3 – Industrial installation circuitry	59
Figure D.4 – example for a lightning protection system	60
Figure F.1 – General distribution of lightning current	64
Figure H.1 – A wiring diagram of an SPD connected on the load side of the main incoming isolator via a separate isolator (which could be included in SPD enclosure)	67
Figure H.2 – SPD connected to the nearest available outgoing way (MCB) to the incoming supply (TNS installation typically seen in the UK)	68
Figure H.3 – A single line-wiring diagram of an SPD connected in shunt on the first outgoing way of the distribution panel via a fuse (or MCB).	69

Table 1 – Maximum TOV values as given in IEC 60634-4-44	.17
Table 2 – Preferred values of I _{imp}	.23
Table 3 – Possible modes of protection for various LV systems	. 30
Table 4 – Minimum required Uc of the SPD dependent on supply system configuration	. 35
Table 5 – Typical TOV values	. 36

Introduction

This TS is to be used with the European standard EN 61643-11:2001, *Low-voltage surge* protective devices – Part 11: Surge protective devices connected to low voltage power systems – Requirements and tests.

Surge protective devices (SPDs) are used to protect, under specified conditions, electrical systems and equipment against various overvoltages and impulse currents, such as lightning and switching surges.

SPDs shall be selected in accordance with their environmental conditions and the acceptable failure rate of the equipment and the SPDs.

This TS provides information :

- to the user about characteristics useful for the selection of an SPD.
- to evaluate the need for using SPDs in low-voltage systems.
- on selection and co-ordination of SPDs, while taking into account the entire environment in which they are applied. Some examples are: equipment to be protected and system characteristics, insulation levels, overvoltages, method of installation, location of SPDs, co-ordination of SPDs, failure mode of SPDs and equipment failure consequences.
- and provides guidance to perform a risk analysis.

The HD 384 series of harmonised documents provides direct information for contractors on the installation of SPDs.

For the purpose of having a usable and complete working document, parts from existing documents have been duplicated where necessary. Such parts are explicitly mentioned in the text and attention is drawn to the reader that these parts may change in future.

Keys to understanding the structure of this standard

The list below summarizes the structure of this standard and provides a summary of the information covered in each clause and annex. The main clauses provide basic information on the factors used for SPD selection. Readers who wish to obtain more detail on the information provided in Clauses 4 to 7 should refer to the relevant annexes.

Clause 1 describes the scope of this standard.

Clause 2 lists the normative references where additional information may be found.

Clause 3 provides definitions useful for the comprehension of this standard.

Clause 4 addresses the parameters of systems and equipment relevant to SPDs. In addition to the stresses created by lightning, those created by the network itself as temporary overvoltages and switching surges are described.

Clause 5 lists the electrical parameters used in the selection of an SPD and gives some explanation regarding these parameters. These are related to the data given in EN 61643-11.

Clause 6 is the core of this standard. It relates the stresses coming from the network (as discussed in Clause 4) to the characteristics of the SPD (as discussed in Clause 5). It outlines how the protection given by SPDs may be affected by its installation. The different steps for the selection of an SPD are presented including the problems of co-ordination when more than one SPD is used in an installation (details about co-ordination may be found in Annex F).

Clause 7 is an introduction to the risk analysis (considerations of when the use of SPDs is beneficial).

Clause 8 deals with co-ordination between signalling and power lines (under consideration).

Annex A gives examples of various SPD technologies

Annex B deals with explanations of testing procedures used in EN 1643-11

Annex C deals with the calculation of the sharing of lightning current between different earthing systems.

Annex D provides specific examples on the use of this TS.

Annex E provides specific examples of the use of the risk analysis.

Annex F deals with consideration when Type ! SPDs are to be applied

Annex G discusses differences between immunity level and insulation withstand of equipments

Annex H provides practical examples of SPD installation as used in some countries

EMAX I _c I _f I _{fi} Iimp I _L Imax	Maximum energy withstand Continuous operating current Follow current Follow current interrupting rating Impulse current for class I test
I _c I _f I _{fi} Iimp I _L Imax	Continuous operating current Follow current Follow current interrupting rating Impulse current for class I test
If Ifi Iimp IL Imax	Follow current Follow current interrupting rating Impulse current for class I test
I _{fi} Iimp I _L Imax	Follow current interrupting rating Impulse current for class I test
Iimp I _L Imax	Impulse current for class I test
I _L	
Imax	Rated load current
тнах	Maximum discharge current for class II test
In	Nominal discharge current
<i>I</i> p	Prospective short circuit current of the power supply
<i>I</i> peak	Current peak value of impulse current
I _{PE}	Residual current
I _{sc}	Short-circuit current of the CWG
Ng	Ground flash density
N _k	Keraunic level
Uc	Maximum continuous operating voltage
U _{cs}	Maximum continuous operating voltage of the power system
Udyn	Dynamic sparkover voltage of a gap
Um	Measured limiting voltage
Un	Nominal voltage of the system phase to earth
U ₀	Line-to-neutral voltage of the system
U _{oc}	Open-circuit voltage for class III test
Up	Voltage protection level
Uref	Reference voltage of a varistor
Ures	Residual voltage
UT	Temporary overvoltage
UTOV	Temporary overvoltage of the power system
UTOV,HV	Temporary overvoltage of the network inside the high-voltage system
UTOV,LV	Temporary overvoltage of the network inside the low-voltage system
U _W	Voltage withstand

List of variables and abbreviations used in this standard

List of abbrevia	ations
CWG	Combination wave generator
EMC	Electromagnetic compatibility
GDT	Gas discharge tubes
ну О	High voltage
IP	Degrees of protection provided by the enclosure
L	Inductance
LPS	Lightning protection system
LPZ	Lightning protection zone
LV	Low voltage
MEB	Main equipotential bonding
MOV	Metal oxide varistor
HVA	High voltage A (medium voltage, <50 kV), called sometimes improperly MV
PE	Protective Earth
Q	Charge of impulse current
RCD	Residual current device
τον	Temporary overvoltage
SPD	Surge protective device
ZnO	Zinc oxide

LOW-VOLTAGE SURGE PROTECTIVE DEVICES -

Part 12: Surge protective devices connected to low-voltage power distribution systems – Selection and application principles

1 Scope

This part of IEC 61643 describes the principles for selection, operation, location and co-ordination of SPDs to be connected to 50 Hz to 60 Hz a.c. power circuits and equipment rated up to 1 000 V r.m.s..

NOTE 1 This technical specification deals only with SPDs and not with SPDs components integrated inside equipment.

2 Normative references

See Annex ZA.

3 Definitions

For the purposes of this Technical Specification the following definitions apply.

NOTE These definitions are for the most part reproduced from EN 61643-11 (the definition number being indicated within square brackets). Where necessary a note has been added for better understanding regarding application of SPDs.

3.1 surge protective device SPD

device that is intended to limit transient overvoltages and divert surge currents. It contains at least one non-linear component

[definition 3.1 of EN 61643-11]

3.2

continuous operating current

Ic

current flowing through each mode of protection of the SPD when energized at the maximum continuous operating voltage (U_c) for each mode

3.3

maximum continuous operating voltage

Uc

maximum r.m.s. voltage which may be continuously applied to the SPD's mode of protection. This is equal to the rated voltage

[definition 3.11 of EN 61643-11]

3.4

voltage protection level

U_{p}

parameter that characterizes the performance of the SPD in limiting the voltage across its terminals, which is selected from a list of preferred values. This value is greater than the highest value of the measured limiting voltages

[definition 3.15 of EN 61643-11]