INTERNATIONAL STANDARD ISO 9022-9 Second edition 2016-05-01 # Optics and photonics — Environmental test methods — Part 9: **Solar radiation and weathering** Optique et photonique — Méthodes d'essais d'environnement — Partie 9: Rayonnement solaire et désagrégation © ISO 2016, Published in Switzerland voduced or utilized c te internet or an 'nr ISO's memb All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Co | ntents | Page | |-------|---|------| | Fore | eword | iv | | Intr | roduction | vi | | 1 | Scope | 1 | | 2 | Normative references | | | 3 | General information and test conditions | | | 4 | Conditioning methods | 2 | | | 4.1 Conditioning method 20: Solar radiation | 2 | | 5 | Procedure | | | J | 5.1 General
5.2 Preconditioning | 6 | | 6 | Environmental test code | 7 | | 7 | Specification | 7 | | Bibl | liography | 8 | | © ISO | O 2016 - All rights reserved | iii | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. The committee responsible for this document is ISO/TC 172, Optics and photonics, Subcommittee SC 1, Fundamental standards. This second edition cancels and replaces the first edition (ISO 9022-9:1994), of which Clause 4 has been technically revised. ISO 9022 consists of the following parts, under the general title *Optics and photonics — Environmental test methods*: - Part 1: Definitions, extent of testing - Part 2: Cold, heat and humidity - Part 3: Mechanical stress - Part 4: Salt mist - Part 6: Dust - Part 7: Resistance to drip or rain - Part 8: High internal pressure, low internal pressure, immersion - Part 9: Solar radiation and weathering - *Part 11: Mould growth* - Part 12: Contamination - Part 14: Dew, hoarfrost, ice - Part 17: Combined contamination, solar radiation - Part 20: Humid atmosphere containing sulfur dioxide or hydrogen sulfide - Part 22: Combined cold, dry heat or temperature change with bump or random vibration - art 22: Co. Part 23: Low p. And Control of the Con #### Introduction Optical instruments are affected during their use by a number of different environmental parameters which they are required to resist without significant reduction in performance and to remain within defined specifications. The type and severity of these parameters depend on the conditions of use of the instrument (for example, in a laboratory or workshop) and on its geographical location. The environmental effects on optical instrument performance in the tropics and subtropics are totally different from those found when they are used in arctic regions. Individual parameters cause a variety of different and overlapping effects on instrument performance. The manufacturer attempts to ensure, and the user naturally expects, that instruments will resist the likely rigours of their environment throughout their life. This expectation can be assessed by exposure of the instrument to a range of simulated environmental parameters under controlled laboratory conditions. The severity of these conditions is often increased to obtain meaningful results in a relatively short period of time. In order to allow assessment and comparison of the response of optical instruments to appropriate environmental conditions, ISO 9022 contains details of a number of laboratory tests which reliably simulate a variety of different environments. The tests are based largely on IEC standards, modified where necessary to take into account features special to optical instruments. As a result of continuous progress in all fields, optical instruments are no longer only precision-engineered optical products, but, depending on their range of application, also contain additional assemblies from other fields. For this reason, the principal function of the instrument is to be assessed to determine which International Standard should be used for testing. If the optical function is of primary importance, then ISO 9022 is applicable; but if other functions take precedence, then the appropriate International Standard in the field concerned should be applied. Cases may arise where application of both ISO 9022 and other appropriate International Standards will be necessary. ### Optics and photonics — Environmental test methods — #### Part 9: #### Solar radiation and weathering #### 1 Scope This part of ISO 9022 specifies the methods relating to the environmental tests of optical instruments including additional assemblies from other fields (e.g. mechanical, chemical and electronic devices), under equivalent conditions, for their ability to resist the effects of simulated solar radiation or laboratory weathering, which is a combination of simulated solar radiation, heat, and moisture. It is applicable to instruments that may be exposed to sunlight during operation or unsheltered storage on the earth's surface, or in the lower atmosphere. The purpose of testing is to investigate to what extent the optical, climatic, mechanical, chemical and electrical (including electrostatic) performance characteristics of the specimen are affected by solar radiation or weathering (solar radiation, heat, and moisture). #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies . ISO 4892-1:1999, Plastics — Methods of exposure to laboratory light sources — Part 1: General guidance ISO 4892-2:2013, Plastics — Methods of exposure to laboratory light sources — Part 2: Xenon-arc lamps ISO 9022-1, Optics and photonics — Environmental test methods — Part 1: Definitions, extent of testing ISO 9370, Plastics — Instrumental determination of radiant exposure in weathering tests — General guidance and basic test method IEC 60068-2-5:2010, Environmental testing — Part 2-5: Tests — Test Sa: Simulated solar radiation at ground level and guidance for solar radiation testing #### 3 General information and test conditions A radiation source capable of generating irradiance as specified in <u>Table 1</u> on the specimen surface or in a plane specified in the relevant specification is installed in a heated test chamber. The data shall include any radiation reflected from the test chamber walls but not infrared radiation emitted from the chamber walls on account of the wall temperature. Ozone generated during exposure shall be removed from the test chamber. The position and mounting of the specimen, the characteristics of its support and the location of the test points for measuring the radiation and the temperature within the exposure zone shall be specified in the relevant specification. In addition to the requirements specified above, IEC 60068-2-5 applies.