INTERNATIONAL STANDARD

ISO 8986-2

Second edition 2009-11-15

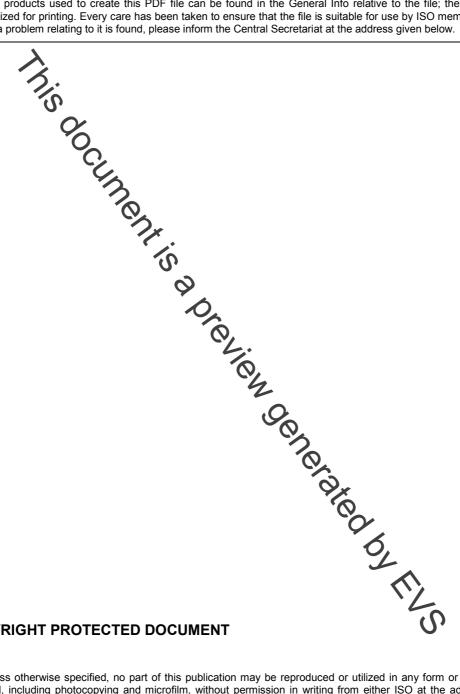
Plastics — Polybutene-1 (PB-1) moulding and extrusion materials —

Part 2:

Preparation of test specimens and determination of properties

Plastiques — Matériaux à base de polybutène-1 (PB-1) pour moulage et extrusion —

Partie 2: Préparation des éprouvettes et détermination des propriétés



PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2009

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possible that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 8986-2 was prepared by Technica Committee ISO/TC 61, *Plastics*, Subcommittee SC 9, *Thermoplastic materials*.

This second edition cancels and replaces the first edition (ISO 8986-2:1995), which has been technically revised to reflect the changes made in the concurrent revision of ISO 8986-1. It also incorporates the Amendment ISO 8986-2:1995/Amd.1:2000.

ISO 8986 consists of the following parts, under the general title *Plastics* — *Polybutene-1 (PB-1) moulding and extrusion materials*:

- Part 1: Designation system and basis for specifications
- Part 2: Preparation of test specimens and determination of properties

iii

Inis document is a preview denetated by EUS

Plastics — Polybutene-1 (PB-1) moulding and extrusion materials —

Part 2:

Preparation of test specimens and determination of properties

1 Scope

This part of ISO 8986 specifies the methods of preparation of test specimens and the test methods to be used in determining the properties of polybutene-1 (PB-1) moulding and extrusion materials. For the sake of simplicity, the designation polybutene and the abbreviation PB are used in both parts of ISO 8986. Requirements for handling test material and for conditioning both the test material before moulding and the specimens before testing are also specified.

Procedures and conditions for the preparation of test specimens and procedures for measuring properties of the materials from which these specimens are made are given. Properties and test methods which are suitable and necessary to characterize PB medding and extrusion materials are listed.

The properties have been selected from the gereal test methods in ISO 10350-1. Other test methods in wide use for or of particular significance to these moulding and extrusion materials are also included in this part of ISO 8986, as is the designatory property specified in Part 1.

In order to obtain reproducible and comparable test results, it is necessary to use the methods of specimen preparation and conditioning, the specimen dimensions and the test procedures specified herein. Values determined will not necessarily be identical to those obtained using specimens of different dimensions or prepared using different procedures.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 62, Plastics — Determination of water absorption

ISO 75-2, Plastics — Determination of temperature of deflection under load — Part 2. Plastics and ebonite

ISO 178, Plastics — Determination of flexural properties

ISO 179-1, Plastics — Determination of Charpy impact properties — Part 1: Non-instrumented impact test

ISO 179-2, Plastics — Determination of Charpy impact properties — Part 2: Instrumented impact test

ISO 291, Plastics — Standard atmospheres for conditioning and testing

ISO 293, Plastics — Compression moulding of test specimens of thermoplastic materials

© ISO 2009 – All rights reserved

ISO 8986-2:2009(E)

- ISO 527-2, Plastics Determination of tensile properties Part 2: Test conditions for moulding and extrusion plastics
- ISO 527-4, Plastics Determination of tensile properties Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites
- ISO 899-1, Plastics Determination of creep behaviour Part 1: Tensile creep
- ISO 1133, Plastics Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics
- ISO 1183-1, Plastics Nethods for determining the density of non-cellular plastics Part 1: Immersion method, liquid pyknometer method and titration method
- ISO 1183-2, Plastics Methods for determining the density of non-cellular plastics Part 2: Density gradient column method
- ISO 1183-3, Plastics Methods for determining the density of non-cellular plastics Part 3: Gas pyknometer method
- ISO 1628-3, Plastics Determination of the viscosity of polymers in dilute solution using capillary viscometers Part 3: Polyethylenes and polypropylenes
- ISO 2818, Plastics Preparation of test specimens by machining
- ISO 3167, Plastics Multipurpose test specimen
- ISO 4589-2, Plastics Determination of burning behaviour by oxygen index Part 2: Ambient-temperature test
- ISO 8256, Plastics Determination of tensile-impact strengt
- ISO 8986-1, Plastics Polybutene-1 (PB-1) moulding and extrusion materials Part 1: Designation system and basis for specifications
- ISO 10350-1, Plastics Acquisition and presentation of comparable single-point data Part 1: Moulding materials
- ISO 11357-2, Plastics Differential scanning calorimetry (DSC) Part 2. Betermination of glass transition temperature
- ISO 11357-3, Plastics Differential scanning calorimetry (DSC) Part 3: Determination of temperature and enthalpy of melting and crystallization
- ISO 11357-6, Plastics Differential scanning calorimetry (DSC) Part 6: Determination of oxidation induction time (isothermal OIT) and oxidation induction temperature (dynamic OIT)
- IEC 60093, Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials
- IEC 60112, Method for the determination of the proof and the comparative tracking indices of solid insulating materials
- IEC 60243-1, Electrical strength of insulating materials Test methods Part 1: Tests at power frequencies
- IEC 60250, Recommended methods for the determination of the permittivity and dielectric dissipation factor of electrical insulating materials at power, audio and radio frequencies including metre wavelengths
- IEC 60296, Fluids for electrotechnical applications Unused mineral insulating oils for transformers and switchgear

IEC 60695-11-10, Fire hazard testing — Part 11-10: Test flames — 50 W horizontal and vertical flame test methods

3 Preparation of test specimens

3.1 General

The test specimens shall be prepared by compression moulding.

It is essential that he specimens are always prepared by the same procedure using the same processing conditions.

The material shall be kept in moisture-proof containers until it is required for use.

The moisture content of filled or reinforced materials shall be expressed as a percentage of the total mass of the compound.

3.2 Treatment of the material before moulding

Before processing, no pretreatment of the material sample is normally necessary.

3.3 Compression moulding

Compression-moulded sheets shall be prepared in accordance with ISO 293, using the conditions specified in Table 1.

Table 1 — Conditions for compression moulding of test specimens

Material	Moulding temperature	Average cooling rate	Demoulding temperature		Full-pressure time	Preheating pressure	Preheating time
	°C	°C/min	°C	MPa	min	MPa	min
All grades	200	30	30 ± 5	5 or 10a	5 ± 1	Contact	5 to 15
Use 5 MPa with a frame mould and 10 MPa with a positive mould.							

The test specimens required for the determination of the properties stall be machined from the compression-moulded sheets in accordance with ISO 2818 or punched out.

A type 1 (frame) mould may be used, but it is necessary to start cooling whilst simultaneously applying the full pressure. This avoids the melt being pressed out of the frame and avoids sink prents.

For thicker sheet (≈ 4 mm), a type 2 (positive) mould has been found to work satisfactorily.

The preheating time depends on the type of mould and the type of energy input (steam or electricity). For frame moulds, 5 min is usually sufficient but for positive moulds, due to the bigger mass, a preheating time of up to 15 min may be necessary, especially if electric heating is used.

NOTE 1 Since only the average cooling rate is specified, the actual cooling rate during crystallization is not fixed. This can lead to significant deviations in properties related to crystallinity, such as density and mechanical properties.

NOTE 2 Since for frame moulds full pressure is only applied upon cooling, compression-moulded sheets may suffer from insufficient homogeneity and pellet boundaries may be preserved if the heating time or the pressure is insufficient.

© ISO 2009 – All rights reserved