# INTERNATIONAL STANDARD



423

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION-МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ-ORGANISATION INTERNATIONALE DE NORMALISATION

# Photographic grade hydroquinone — Specification

Hydroquinone de qualité photographique — Spécifications

First edition - 1976-07-15

UDC 771.7:547.565.2

Ref. No. ISO 423-1976 (E)

#### **FOREWORD**

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

Prior to 1972, the results of the work of the Technical Committees were published as ISO Recommendations; these documents are now in the process of being transformed into International Standards. As part of this process, Technical Committee ISO/TC 42 has reviewed ISO Recommendation R 423 and found it technically suitable for transformation. International Standard ISO 423 therefore replaces ISO Recommendation R 423-1965.

ISO Recommendation R 423 was approved by the Member Bodies of the following countries :

Belgium Brazil Canada Chile Italy Japan Netherlands Switzerland United Kingdom U.S.A.

U.S.S.R.

Chile New Zealand France Romania Germany Sweden

No Member Body expressed disapproval of the Recommendation.

No Member Body disapproved the transformation of ISO/R 423 into an International Standard.

# Photographic grade hydroquinone — Specification

#### 0 INTRODUCTION

This International Standard is one of a series of specifications for photographic grade chemicals which are commonly used in the processing of sensitized photographic materials. These specifications have been prepared to establish criteria of purity which will provide a practical and economical grade, and prevent possible faulty processing which might be caused by chemicals of inferior quality, and to furnish manufacturers, suppliers, and processors with reliable and readily available specifications for photographic chemicals of satisfactory quality.

Photographic grade chemicals are those which meet the requirements specified in the appropriate International Standards. These specifications set out purity standards and state the limiting concentrations and test methods for certain inert or photographically harmful impurities that may be present.

Originally these specifications were based on known requirements for black-and-white photographic processing, but increased attention has been paid to the requirements of colour processing. Experience to date indicates that chemicals meeting these specifications are satisfactory for colour processes in general use.

#### 0.1 Specification requirements

These specifications set out chemical and physical requirements. While it is recognized that the ultimate criterion of the quality of a photographic chemical is its successful performance in a photographic test, present knowledge indicates that, from a practical standpoint, chemical and physical methods of testing are generally adequate. The photographic industry has accumulated a comprehensive collection of such chemical tests for impurities. These tests, which correlate with objectionable photographic effects, have been drawn upon in the formulation of these specifications. Chemical tests are generally more sensitive, less variable, and less costly than photographic tests.

Purity requirements have been set as low as possible, consistent with the objectives mentioned. If, however, the purity of a commonly available grade of chemical exceeds photographic processing requirements, and if there is no economic penalty in its use, the purity requirements have been set to take advantage of the higher quality materials.

Every effort has been made to keep the number of requirements in each specification to a minimum. The requirements generally include only those photographically harmful impurities which, through experience, are likely to be present. Inert impurities are limited to amounts which will not unduly reduce the assay.

Assay procedures have been included in all cases where a satisfactory method is available. An effective assay requirement serves not only as a safeguard of chemical purity, but also as a valuable complement to the identity test. All assays are intended to be made on undried samples in view of the fact that photographic processing chemicals are normally used "as received".

Identity tests have been included in the specifications wherever a possibility exists that another chemical or a mixture of chemicals could pass the other tests.

All requirements listed in clause 3 of each specification are mandatory. The physical appearance of the material and any footnotes are for general information only and are not part of the requirements.

# 0.2 Selection of test methods

Efforts have been made to employ tests which are capable of being run in any normally equipped laboratory and, wherever possible, to avoid tests which require highly specialized equipment or techniques. Instrumental methods have been specified only as alternative methods or alone in those cases where no other satisfactory method is available.

While the test methods set out in the specifications are recommended, the use of other equally reliable methods is allowed. In case of disagreement in results, the method called for in the specification shall prevail. Where a requirement states "to pass test", however, alternative methods shall not be used.

#### 0.3 Reagents

An effort has been made to minimize the number of reagents employed in this series of specifications. The methods of preparation and of standardization have been included in all cases where these are not common, or where a preferred method is desirable.

Details of reagent preparation and standardization are included in each specification in which the reagent is called for so that each specification shall be self-sufficient.

#### 1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies the purity requirements of, and test methods for, photographic grade hydroquinone.

# 2 CHARACTERISTICS

Hydroquinone is in the form of white or almost white crystals or crystalline powder, of chemical formula  $C_6H_4(OH)_2$  and relative molar mass 110,1.

#### 3 REQUIREMENTS

### 3.1 Assay

The assay shall be not lower than 99,0 % (m/m) and not greater than 101 % (m/m), expressed as  $C_6H_4(OH)_2$ , when determined by the method described in 4.1.

#### 3.2 Appearance of solution

A dilute acetic acid solution shall be clear and colourless when prepared and examined by the method described in 4.2.

## 3.3 Residue after ignition

The residue after ignition shall be not greater than 0.10% (m/m), when determined by the method described in 4.3.

# 3.4 Heavy metals content

The heavy metals content, expressed as lead (Pb), shall be not greater than 20 mg/kg.

Conformity with this requirement shall be determined by the limit test described in 4.4, when the colour produced in the test solution shall be not greater than that produced in the control solution.

#### 3.5 Iron content

The iron content, expressed as iron (Fe), shall be not greater than 20 mg/kg.

Conformity with this requirement shall be determined by the limit test described in 4.5, when the colour produced in the test solution shall be not greater than that produced in the control solution.

#### 3.6 Identity

#### 3.6.1 Melting point

The melting point shall be not lower than 171 °C and not higher than 175 °C, when determined by the method described in 4.6.1.

# 3.6.2 Mixed melting point

The melting point of the mixture of sample and standard shall be not lower than the melting point of either the sample or the standard, when determined by the method described in 4.6.1.

## 3.6.3 Infra-red spectrum

The infra-red absorption curve shall be essentially the same as that of the reference spectrum (see the figure), when determined by the method described in 4.6.2.

This requirement is an optional identity requirement supplementary to those of 3.6.1 and 3.6.2.

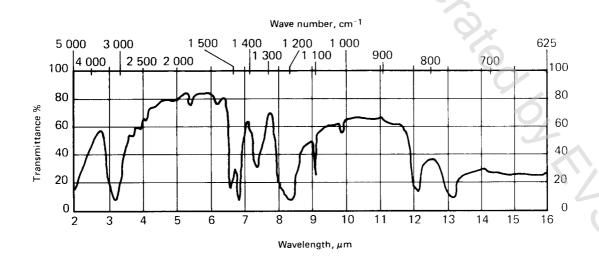



FIGURE — Reference infra-red spectrum of hydroquinone (KBr plate)