EESTI STANDARD

EVS-EN IEC 62812:2019

Low resistance measurements - Methods and guidance

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

6				
See Eesti standard EVS-EN IEC 62812:2019 sisaldab Euroopa standardi EN IEC 62812:2019 ingliskeelset teksti.	This Estonian standard EVS-EN IEC 62812:2019 consists of the English text of the European standard EN IEC 62812:2019.			
Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas	This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation.			
Euroopa standardimisorganisatsioonid on teinud Euroopa standardi rahvuslikele liikmetele kättesaadavaks 05.07.2019.	Date of Availability of the European standard is 05.07.2019.			
Standard on kättesaadav Eesti Standardikeskusest.	The standard is available from the Estonian Centre for Standardisation.			

Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile <u>standardiosakond@evs.ee</u>.

ICS 31.040.01

Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud.

Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Koduleht <u>www.evs.ee</u>; telefon 605 5050; e-post <u>info@evs.ee</u>

The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation.

If you have any questions about copyright, please contact Estonian Centre for Standardisation:

Homepage www.evs.ee; phone +372 605 5050; e-mail info@evs.ee

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN IEC 62812

July 2019

ICS 31.040.01

English Version

Low resistance measurements - Methods and guidance (IEC 62812:2019)

Mesures de faibles résistances - Méthodes et recommandations (IEC 62812:2019) Messung niederohmiger Widerstände - Verfahren und Leitfaden (IEC 62812:2019)

This European Standard was approved by CENELEC on 2019-06-06. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2019 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

European foreword

The text of document 40/2665/FDIS, future edition 1 of IEC 62812, prepared by IEC/TC 40 "Capacitors and resistors for electronic equipment" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 62812:2019.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2020-03-06 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2022-06-06 document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 62812:2019 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 60115-2	NOTE	Harmonized as EN 60115-2
IEC 60115-8	NOTE	Harmonized as EN 60115-8
IEC 60301	NOTE	Harmonized as EN 60301
IEC 61249-5-1	NOTE	Harmonized as EN 61249-5-1

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

Publication	<u>Year</u>	Title	<u>EN/HD</u>	Year
IEC 60068-1	-	Environmental testing - Part 1: General and guidance	EN 60068-1	-
IEC 60115-1 (mod)	2008	Fixed resistors for use in electronic equipment - Part 1: Generic specification	EN 60115-1	2011
-	-		+ A11	2015
IEC 60294	-	Measurement of the dimensions of a cylindrical component with axial terminations	EN 60294	-
		CL L		
		0		
		Ç		
			2	
			1	
				S

CONTENTS

FOREWO	PRD	4
1 Scop	e	6
2 Norm	native references	6
3 Term	is and definitions	6
4 Resi	stance measurement phenomena	7
4.1	General	7
4.2	Lead and contact resistance	7
4.3	Self-heating	9
4.4	Variation of resistance with temperature	10
4.5	Thermoelectric e.m.f.	12
4.6	Peltier effect	15
5 Meth	ods of measurement	16
5.1	General	16
5.2	Four-wire resistance measurement	16
5.3	Offset compensation method	19
5.4	Current inversion method	22
5.5	Differential current inversion method	25
5.6	Short-term trigger method	28
6 Conr	necting the specimen	32
6.1	Resistors with lead wires for soldered assembly	32
6.1.1	Connecting leaded resistors in a test fixture	32
6.2	Resistors with solder terminations for surface mount assembly	33
6.2.1	Connecting SMD resistors on a test substrate	33
6.2.2	Connecting SMD resistors in a test fixture	35
7 Infor	mation to be given in the relevant component specification	36
Annex A ((normative) Letter symbols and abbreviated terms	37
A.1	Letter symbols	37
A.2	Abbreviated terms	38
Annex B (mount res	(informative) Test results of soldering pad with Kelvin connection for surface sistors	39
B.1	General	39
B.2	Test procedures	39
B.2.1	Test substrates	39
B.2.2	2 Test method	41
B.3	Measurement result and studies	42
Bibliograp	bhy	45
Figure 1 -	- Resistance measurement using two-wire sensing	8
Figure 2 -	- Variation of resistance with temperature (random example)	10
Figure 3 -	- Resistances on a resistor with lead wires	11
Figure 4 -	- SMD chip resistor on a PCB	12
Figure 5 -	- Thermoelectric e.m.f	13
Figure 6 -	- Thermocouples on a resistor with lead wires	.14
Figure 7 -	- Resistance measurement affected by thermoelectric e m f	15

Figure 8 – Four-wire resistance measurement	17
Figure 9 – Offset compensation method for resistance measurement	19
Figure 10 – Current and voltage in the offset compensation method	20
Figure 11 – Current inversion method for resistance measurement	22
Figure 12 – Current and voltage in the current inversion method	23
Figure 13 – Current and voltage in the differential current inversion method	26
Figure 14 – Example of resistor specimen	31
Figure 15 – Connecting leaded resistors in a test fixture	32
Figure 16 – Resistance of cylindrical copper lead wires	
Figure 17 – Soldering pad of test substrate for Kelvin (four-point) connections	34
Figure 18 – Resistance of PCB conductor tracks with 35 µm copper thickness	35
Figure 19 – Example for connecting SMD resistors on a test fixture	
Figure B.1 – Lengths of soldering pad	40
Figure B.2 – Position of voltage sense conductor	40
Figure B.3 – Thickness of the solder printing screen and position of sense line	43
Figure B.4 – Position of voltage-sensing line	43
Figure B.5 – Soldering pad length	
Figure B.6 – Recommended soldering pad	44
Table 1 – Relative Seebeck coefficients of selected metals	13
Table A.1 – Letter symbols	37
Table B.1 – Thickness of solder printing screen	41
Table B.1 – Thickness of solder printing screen Table B.2 – Table of test conditions	41 42
Table B.1 – Thickness of solder printing screen Table B.2 – Table of test conditions	41 42
Table B.1 – Thickness of solder printing screen Table B.2 – Table of test conditions	41 42
Table B.1 – Thickness of solder printing screen Table B.2 – Table of test conditions	41 42
Table B.1 – Thickness of solder printing screen Table B.2 – Table of test conditions	41 42
Table B.1 – Thickness of solder printing screen Table B.2 – Table of test conditions	41 42
Table B.1 – Thickness of solder printing screen Table B.2 – Table of test conditions	41 42
Table B.1 – Thickness of solder printing screen Table B.2 – Table of test conditions	41 42
Table B.1 – Thickness of solder printing screen Table B.2 – Table of test conditions	41 42
Table B.1 – Thickness of solder printing screen Table B.2 – Table of test conditions	41 42
Table B.1 – Thickness of solder printing screen Table B.2 – Table of test conditions	41 42
Table B.1 – Thickness of solder printing screen	41 42
Table B.1 – Thickness of solder printing screen Table B.2 – Table of test conditions	41 42
Table B.1 – Thickness of solder printing screen	41 42
Table B.1 – Thickness of solder printing screen	41
Table B.1 – Thickness of solder printing screen	41 42
Table B.1 – Thickness of solder printing screen	
Table B.1 – Thickness of solder printing screen	41 42
Table B.1 – Thickness of solder printing screen	41 42
Table B.1 – Thickness of solder printing screen Table B.2 – Table of test conditions	41 42
Table B.2 – Table of test conditions	41 42
Table B.1 – Thickness of solder printing screen	41 42

INTERNATIONAL ELECTROTECHNICAL COMMISSION

LOW RESISTANCE MEASUREMENTS – METHODS AND GUIDANCE

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62812 has been prepared by IEC technical committee 40: Capacitors and resistors for electronic equipment.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
40/2665/FDIS	40/2671/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed, •
- withdrawn, •
- replaced by a revised edition, or
- amended.