EESTI STANDARD

EVS-EN IEC 60071-2:2018

- Part . Insulation co-ordination - Part 2: Application guidelines

EESTI STANDARDI EESSÕNA

NATIONAL FOREWORD

See Eesti standard EVS-EN IEC 60071-2:2018 sisaldab Euroopa standardi EN IEC 60071-2:2018 ingliskeelset teksti.	This Estonian standard EVS-EN IEC 60071-2:2018 consists of the English text of the European standard EN IEC 60071-2:2018.
Standard on jõustunud sellekohase teate avaldamisega EVS Teatajas.	This standard has been endorsed with a notification published in the official bulletin of the Estonian Centre for Standardisation.
Euroopa standardimisorganisatsioonid on teinud Euroopa standardi rahvuslikele liikmetele kättesaadavaks 04.05.2018.	Date of Availability of the European standard is 04.05.2018.
Standard on kättesaadav Eesti Standardikeskusest.	The standard is available from the Estonian Centre for Standardisation.
lagasisidet standardi sisu kohta on võimalik edastad	da, kasutades EVS-i veebilehel asuvat tagasiside vorm

Tagasisidet standardi sisu kohta on võimalik edastada, kasutades EVS-i veebilehel asuvat tagasiside vormi või saates e-kirja meiliaadressile standardiosakond@evs.ee.

ICS 29.080

Standardite reprodutseerimise ja levitamise õigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonsesse süsteemi või edastamine ükskõik millises vormis või millisel teel ilma Eesti Standardikeskuse kirjaliku loata on keelatud.

Kui Teil on küsimusi standardite autorikaitse kohta, võtke palun ühendust Eesti Standardikeskusega: Koduleht www.evs.ee; telefon 605 5050; e-post info@evs.ee

The right to reproduce and distribute standards belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without a written permission from the Estonian Centre for Standardisation.

If you have any questions about copyright, please contact Estonian Centre for Standardisation:

Homepage www.evs.ee; phone +372 605 5050; e-mail info@evs.ee

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN IEC 60071-2

May 2018

ICS 29.080

Supersedes EN 60071-2:1997

English Version

Insulation co-ordination - Part 2: Application guidelines (IEC 60071-2:2018)

Coordination de l'isolement - Partie 2: Lignes directrices en matière d'application (IEC 60071-2:2018) Isolationskoordination - Teil 2: Anwendungsrichtlinie (IEC 60071-2:2018)

This European Standard was approved by CENELEC on 2018-04-20. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2018 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

European foreword

The text of document 28/255/FDIS, future edition 4 of IEC 60071-2, prepared by IEC/TC 28 "Insulation co-ordination" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 60071-2:2018.

The following dates are fixed:

•	latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2019-01-20
•	latest date by which the national standards conflicting with the	(dow)	2021-04-20

document have to be withdrawn

This document supersedes EN 60071-2:1997.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 60071-2:2018 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 60099-4:2014	NOTE	Harmonized as EN 60099-2014 (not modified).
IEC 60099-5	NOTE	Harmonized as EN IEC 60099-5.
IEC 60099-8	NOTE	Harmonized as EN IEC 60099-8.
IEC 60507	NOTE	Harmonized as EN 60507.
IEC 62271-1:2017	NOTE	Harmonized as EN 62271-1:2017 (not modified).
IEC 62271-100:2008	NOTE	Harmonized as EN 62271-100:2009 (not modified).

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>www.cenelec.eu</u>.

Publication	<u>Year</u>	Title	<u>EN/HD</u>	<u>Year</u>
IEC 60060-1	2010	High-voltage test techniques Part 1: General definitions and test requirements	EN 60060-1	2010
IEC 60071-1	2006	Insulation co-ordination Part 1: Definitions, principles and rules	EN 60071-1	2006
+ A1	2010		+ A1	2010
IEC 60505	2011	Evaluation and qualification of electrical insulation systems	EN 60505	2011
IEC/TS 60815-1	-	Selection and dimensioning of high-voltage insulators intended for use in polluted conditions - Part 1: Definitions, information and general principles	9-	-
ISO 2533	1975	Standard Atmosphere	-	-
		2		
			Q x	
			.0	
			0	
			0	
				-0
				0.

3

CONTENTS

F	OREWO	PRD	8
1	Scop	e	10
2	Norm	native references	10
3	Term	s definitions abbreviated terms and symbols	11
0	2 1	Torma and definitiona	1 1
	3.1	Abbreviated terms	1 1 1 1
	3.2 3.3	Symbols	11
Δ	0.0 Renr	esentative voltage stresses in service	16
-	1 1	Origin and closefication of voltage stresses	10
	4.1	Characteristics of everyoltage protection devices	10
	4.2	Conoral remarks	17
	4.2.1	Motol oxide surge arresters without gaps (MOSA)	17
	4.2.2	Line surge arresters (LSA) for overhead transmission and distribution	17
	4.2.3	lines	19
	4.3	Representative voltages and overvoltages	19
	4.3.1	Continuous (power-frequency) voltage	19
	4.3.2	Temporary overvoltages	20
	4.3.3	Slow-front overvoltages	23
	4.3.4	Fast-front overvoltages	29
	4.3.5	Very-fast-front overvoltages [13]	33
5	Co-o	rdination withstand voltage	34
	5.1	Insulation strength characteristics	34
	5.1.1	General	34
	5.1.2	Influence of polarity and overvoltage shapes	35
	5.1.3	Phase-to-phase and longitudinal insulation	36
	5.1.4	Influence of weather conditions on external insulation	36
	5.1.5	Probability of disruptive discharge of insulation	37
	5.2	Performance criterion	38
	5.3	Insulation co-ordination procedures	39
	5.3.1	General	39
	5.3.2	Insulation co-ordination procedures for continuous (power-frequency) voltage and temporary overvoltage	40
	5.3.3	Insulation co-ordination procedures for slow-front overvoltages	40
	5.3.4	Insulation co-ordination procedures for fast-front overvoltages	45
6	Requ	lired withstand voltage	46
	6.1	General remarks	46
	6.2	Atmospheric correction	46
	6.2.1	General remarks	46
	6.2.2	Altitude correction	46
	6.3	Safety factors	48
	6.3.1	General	48
	6.3.2	Ageing	48
	6.3.3	Production and assembly dispersion	48
	6.3.4	Inaccuracy of the withstand voltage	48
	6.3.5	Recommended safety factors (\mathcal{K}_{S})	49
7	Stan	dard withstand voltage and testing procedures	49

7.1 General remarks 44 7.1.1 Overview 44 7.1.2 Standard switching impulse withstand voltage 44 7.1.3 Standard switching impulse withstand voltage 50 7.2 Test conversion factors 50 7.2.1 Range I 50 7.2.2 Range I 51 7.3 Determination of insulation withstand by type tests 51 7.3.1 Test procedure dependency upon insulation type 55 7.3.3 Self-restoring insulation 52 7.3.4 Mixed insulation 52 7.3.5 Limitations of the test procedures 55 7.3.6 Selection of the type test procedures 55 8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 56 8.3.1 General 56 8.3.1 General 56 8.4.1 General 56 8.4.2 Distribution lines 57 9.1 Determination for isolw-front overvoltages 56 8.4.3 <td< th=""><th></th><th></th><th></th><th></th></td<>				
7.1.1 Overview 44 7.1.2 Standard switching impulse withstand voltage 45 7.1.3 Standard lightning impulse withstand voltage 55 7.2 Test conversion factors 56 7.2.1 Range I 55 7.3 Determination of insulation withstand by type tests 51 7.3.1 Test procedure dependency upon insulation type 51 7.3.2 Non-self-restoring insulation 52 7.3.3 Self-restoring insulation 52 7.3.4 Mixed insulation 52 7.3.5 Limitations of the type test procedures 56 7.3.6 Selection of the type test procedures 56 8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 56 8.3.1 General 56 8.3.2 Earth-fault overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 57 9.1 General remarks 57 9.1 Operating voltage 57		7.1	General remarks	49
7.1.2 Standard switching impulse withstand voltage 44 7.1.3 Standard lightning impulse withstand voltage 56 7.2 Test conversion factors 56 7.2.1 Range I 56 7.3 Determination of insulation withstand by type tests 57 7.3 Determination of insulation withstand by type tests 57 7.3.2 Non-self-restoring insulation 52 7.3.3 Self-restoring insulation 52 7.3.4 Mixed insulation 52 7.3.5 Limitations of the tsp test procedures 56 7.3.6 Selection of the type test voltages 56 8 Special considerations for overhead lines 55 8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 56 8.3.1 General 55 8.3.1 General 55 8.3.2 Earth-fault overvoltages 56 8.4.3 Transmission lines 57 9 Special considerations for substations 57 9.1.1 Operating voltage<		7.1.1	Overview	49
7.1.3 Standard lighting impulse withstand voltage 55 7.2 Test conversion factors 56 7.2.1 Range I 56 7.2.2 Range I 51 7.3 Determination of insulation withstand by type tests 51 7.3.1 Test procedure dependency upon insulation type 55 7.3.3 Self-restoring insulation 52 7.3.4 Mixed insulation 52 7.3.5 Limitations of the test procedures 52 7.3.6 Selection of the type test voltages 54 8 Special considerations for overhead lines 55 8.1 General memarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 56 8.3.1 General 56 8.3.2 Earth-fault overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 57 9.1 General 56 8.4.3 Transmission lines 57 9.1 General remarks 57 9.1 General		7.1.2	Standard switching impulse withstand voltage	49
7.2 Test conversion factors 56 7.2.1 Range I 57 7.3 Determination of insulation withstand by type tests 51 7.3.1 Test procedure dependency upon insulation type 51 7.3.2 Non-self-restoring insulation 52 7.3.3 Self-restoring insulation 52 7.3.4 Mixed insulation 52 7.3.5 Limitations of the type test procedures 56 7.3.6 Selection of the type test procedures 56 7.3.7 Selection of the type test voltages 56 8.1 General remarks 55 8.3 Insulation co-ordination for operating voltages and temporary overvoltages 55 8.3.1 General 56 8.3.2 Earth-fault overvoltages 56 8.4.1 General 56 8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operating voltage		7.1.3	Standard lightning impulse withstand voltage	50
7.2.1 Range I. 55 7.2.2 Range II. 51 7.3 Determination of insulation withstand by type tests. 51 7.3.1 Test procedure dependency upon insulation type 51 7.3.2 Non-self-restoring insulation 52 7.3.3 Self-restoring insulation 52 7.3.4 Mixed insulation 52 7.3.5 Limitations of the tsp torcedures 53 7.3.6 Selection of the type test procedures 54 7.3.7 Selection for overhead lines 55 8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 55 8.3.1 General 55 8.3.2 Earth-fault overvoltages 56 8.4 Insulation co-ordination for lightning overvoltages 57 </td <td></td> <td>7.2</td> <td>Test conversion factors</td> <td>50</td>		7.2	Test conversion factors	50
7.2.2 Range II 51 7.3 Determination of insulation withstand by type tests 51 7.3.1 Test procedure dependency upon insulation type 52 7.3.3 Self-restoring insulation 52 7.3.4 Mixed insulation 52 7.3.5 Limitations of the test procedures 53 7.3.6 Selection of the type test procedures 54 7.3.7 Selection of the type test voltages 56 8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 55 8.3.1 General 56 8.3.2 Earth-fault overvoltages 56 8.3.1 General 56 8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operatin		7.2.1	Range I	50
7.3 Determination of insulation withstand by type tests 55 7.3.1 Test procedure dependency upon insulation type 55 7.3.2 Non-self-restoring insulation 55 7.3.3 Self-restoring insulation 55 7.3.4 Mixed insulation 55 7.3.5 Limitations of the test procedures 56 7.3.6 Selection of the type test voltages 56 8 Special considerations for overhead lines 55 8.1 General remarks 55 8.2 Insulation co-ordination for objew-front overvoltages 55 8.3.1 General 55 8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 57 9 Special considerations for substations 57 9.1 Overview 57 9.1 General remarks 57 9.1 General remarks 57 9.1 General 56 8.4.1 General		7.2.2	Range II	51
7.3.1 Test procedure dependency upon insulation type 51 7.3.2 Non-self-restoring insulation 52 7.3.3 Self-restoring insulation 52 7.3.4 Mixed Insulation 52 7.3.5 Limitations of the test procedures 53 7.3.6 Selection of the type test procedures 54 7.3.7 Selection of the type test procedures 55 8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 55 8.3.1 General 55 8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9 Special considerations for substations 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltages 56 9.2.1 Substations in transmission systems with $U_{\rm m}$ up to 36 kV in range I		7.3	Determination of insulation withstand by type tests	51
7.3.2 Non-self-restoring insulation 55 7.3.3 Self-restoring insulation 55 7.3.4 Mixed insulation 55 7.3.5 Limitations of the test procedures 55 7.3.6 Selection of the type test voltages 56 8 Special considerations for overhead lines 55 8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 55 8.3.1 General 56 8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 57 9.4.3 Transmission lines 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltages 56 9.2.1 Substations in transmission systems with U_m u		7.3.1	Test procedure dependency upon insulation type	51
7.3.3 Self-restoring insulation 52 7.3.4 Mixed insulation 52 7.3.5 Limitations of the test procedures 53 7.3.6 Selection of the type test procedures 54 7.3.7 Selection of the type test voltages 54 8 Special considerations for overhead lines 55 8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 55 8.3.1 General 56 8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltages 56 9.1.4 Slow-front overvoltages 56 9.2 Insulation co-ordination for overvoltages 56 9.2.1 Subs		7.3.2	Non-self-restoring insulation	52
7.3.4 Mixed insulation. 52 7.3.5 Limitations of the test procedures. 55 7.3.6 Selection of the type test procedures. 54 7.3.7 Selection of the type test voltages 55 8 Special considerations for overhead lines. 55 8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 55 8.3.1 General 55 8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9 Special considerations for substations 57 9.1 Overview 57 9.1.1 Overview 57 9.1.2 Operating voltage 56 9.1.3 Temporary overvoltages 56 9.2.1 Substations in transmission systems with U_m up to 36 kV in range I 55 9.2.2 Substations in transmission systems in range II 56		7.3.3	Self-restoring insulation	52
7.3.5 Limitations of the test procedures 55 7.3.6 Selection of the type test voltages 54 8 Special considerations for overhead lines 55 8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 55 8.3.1 General 55 8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9 Special considerations for substations 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltages 56 9.2.1 Substations in distribution systems with U_m up to 36 kV in range 1 56 9.2.2 Substations in transmission systems in range II 56 9.2.3 Substations in transmission systems with U_m between 52,5 kV and 245 kV in range I 55 9.2.3 Substations in transmission systems with U_m between 52,5 kV and 245		7.3.4	Mixed insulation	52
7.3.6 Selection of the type test voltages 54 7.3.7 Selection of the type test voltages 55 8 Special considerations for overhead lines 55 8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 55 8.3 Insulation co-ordination for slow-front overvoltages 55 8.3.1 General 55 8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltages 56 9.2.1 Substations in distribution systems with $U_{\rm m}$ up to 36 kV in range 1 56 9.2.1 Substations in transmission systems in range 11 56 9.2.2 Substations in transmission systems with $U_{\rm m}$ between 52.5 kV and 245 kV in range 1 56		7.3.5	Limitations of the test procedures	53
7.3.7 Selection of the type test voltages 54 8 Special considerations for overhead lines 55 8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 55 8.3 Insulation co-ordination for slow-front overvoltages 55 8.3.1 General 55 8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4.1 General 56 8.4.1 General 56 8.4.1 General 56 8.4.2 Distribution lines 57 9 Special considerations for substations 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltages 56 9.2.1 Substations in distribution systems with U_m up to 36 kV in range 1 56 9.2.2 Substations in transmission systems with U_m between 52,5 kV and 245 kV in range 1 56 9.2.3 Substations in tran		7.3.6	Selection of the type test procedures	54
8 Special considerations for overhead lines 55 8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 55 8.3 Insulation co-ordination for slow-front overvoltages 55 8.3.1 General 55 8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4 Insulation co-ordination for lightning overvoltages 56 8.4.1 General 56 8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9 Special considerations for substations 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.4 Slow-front overvoltages 56 9.2 Insulation co-ordination for overvoltages 56 9.2.1 Substations in distribution systems with $U_{\rm m}$ up to 36 kV in range I 56 9.2.1 Substations in transmission system		7.3.7	Selection of the type test voltages	54
8.1 General remarks 55 8.2 Insulation co-ordination for operating voltages and temporary overvoltages 55 8.3 Insulation co-ordination for slow-front overvoltages 55 8.3.1 General 55 8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4 Insulation co-ordination for lightning overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9 Special considerations for substations 57 9.1 General remarks 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltages 56 9.2.1 Insulation co-ordination for overvoltages 56 9.2.1 Substations in distribution systems with Um up to 36 kV in range 1 56 9.2.2 Substations in transmission systems with Um between 52.5 kV and 245 kV in range 1 56 9.2.3 Substations in transmission systems in range II 56 9.2.3 Substations in transmission systems in	8	Speci	al considerations for overhead lines	55
8.2 Insulation co-ordination for operating voltages and temporary overvoltages 55 8.3 Insulation co-ordination for slow-front overvoltages 56 8.3.1 General 55 8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4 Insulation co-ordination for lightning overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9 Special considerations for substations 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.3 Temporary overvoltage 57 9.1.4 Slow-front overvoltages 56 9.2 Insulation co-ordination for overvoltages 56 9.2.1 Substations in distribution systems with U_m up to 36 kV in range 1 56 9.2.1 Substations in transmission systems in range II 56 9.2.3 Substations in transmission systems in range II 56 9.2.3 Substations in transmission systems in range II 56		8.1	General remarks	55
8.3 Insulation co-ordination for slow-front overvoltages 55 8.3.1 General 56 8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4 Insulation co-ordination for lightning overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9 Special considerations for substations 57 9.1 General remarks 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltages 56 9.2.1 Substations in distribution systems with U_m up to 36 kV in range I 56 9.2.1 Substations in transmission systems with U_m between 52.5 kV and 245 kV in range I 56 9.2.3 Substations in transmission systems in range II 66 Annex A (informative) Determination of the representative slow-front overvoltage due to line energization and re-energization 67 8.3 Ubsubility distribution of overvoltages 66 9.2.3 Substations in transmission systems in range II 66		8.2	Insulation co-ordination for operating voltages and temporary overvoltages	55
8.3.1General558.3.2Earth-fault overvoltages568.3.3Energization and re-energization overvoltages568.4Insulation co-ordination for lightning overvoltages568.4.1General568.4.2Distribution lines568.4.3Transmission lines579Special considerations for substations579.1General remarks579.1.1Overview579.1.2Operating voltage579.1.3Temporary overvoltages569.1.4Slow-front overvoltages569.1.5Fast-front overvoltages569.2.1Substations in distribution systems with U_m up to 36 kV in range I569.2.2Substations in transmission systems with U_m between 52,5 kV and 245 kV in range I569.2.3Substations in transmission systems in range II66Annex A (informative) Determination of temporary overvoltages due to earth faults678.1General remarks668.2Disruptive discharge probability of external insulation668.3Cumulative frequency distribution of overvoltages669.4General remarks679.5Optical probability of external insulation669.2.3Substations in transmission systems in range II679.4General remarks679.5Optical probability of external insulation669.6Annex C (informative) Determination of the representative		8.3	Insulation co-ordination for slow-front overvoltages	55
8.3.2 Earth-fault overvoltages 56 8.3.3 Energization and re-energization overvoltages 56 8.4 Insulation co-ordination for lightning overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9 Special considerations for substations 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltages 56 9.1.4 Slow-front overvoltages 56 9.2 Insulation co-ordination for overvoltages 56 9.2.1 Substations in distribution systems with Um up to 36 kV in range I 56 9.2.1 Substations in transmission systems with Um between 52.5 kV and 245 kV in range I 56 9.2.3 Substations in transmission systems in range II 56 9.2.3 Substations of temporary overvoltages 66 8.1 General remarks 66 8.2 Disruptive discharge probability of external insulation 66		8.3.1	General	55
8.3.3 Energization and re-energization overvoltages 56 8.4 Insulation co-ordination for lightning overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9 Special considerations for substations 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltages 56 9.1.4 Slow-front overvoltages 56 9.1.5 Fast-front overvoltages 56 9.2.1 Substations in distribution systems with Um up to 36 kV in range I 56 9.2.1 Substations in transmission systems with Um between 52.5 kV and 245 kV in range I 56 9.2.3 Substations in transmission systems in range II 66 Annex A (informative) Determination of temporary overvoltages due to earth faults 67 B.1 General remarks 66 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 66		8.3.2	Earth-fault overvoltages	56
8.4 Insulation co-ordination for lightning overvoltages 56 8.4.1 General 56 8.4.2 Distribution lines 57 9 Special considerations for substations 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltages 57 9.1.4 Slow-front overvoltages 56 9.2 Insulation co-ordination for overvoltages 56 9.2.1 Substations in distribution systems with Um up to 36 kV in range I 56 9.2.2 Substations in transmission systems with Um between 52,5 kV and 245 kV in range I 56 9.2.3 Substations in transmission systems in range II 56 9.2.3 Substations in transmission systems in range II 66 Annex A (informative) Determination of temporary overvoltages 66 B.1 General remarks 66 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 66 Annex C (informative) Determination of the representative s		8.3.3	Energization and re-energization overvoltages	56
8.4.1 General 56 8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9 Special considerations for substations 57 9.1 General remarks 57 9.1 Operating voltage 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltages 57 9.1.4 Slow-front overvoltages 56 9.2 Insulation co-ordination for overvoltages 56 9.2.1 Substations in distribution systems with Um up to 36 kV in range I 56 9.2.1 Substations in transmission systems with Um up to 36 kV in range I 56 9.2.2 Substations in transmission systems with Um up to 36 kV in range I 56 9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages <td></td> <td>8.4</td> <td>Insulation co-ordination for lightning overvoltages</td> <td>56</td>		8.4	Insulation co-ordination for lightning overvoltages	56
8.4.2 Distribution lines 56 8.4.3 Transmission lines 57 9 Special considerations for substations 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltage 57 9.1.4 Slow-front overvoltages 56 9.1.5 Fast-front overvoltages 56 9.2 Insulation co-ordination for overvoltages 56 9.2.1 Substations in distribution systems with U_m up to 36 kV in range I 56 9.2.2 Substations in transmission systems with U_m up to 36 kV in range I 56 9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 66 Annex C (informative) Determination of the representative slow-front overvolt		8.4.1	General	56
8.4.3 Transmission lines 57 9 Special considerations for substations 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltage 57 9.1.4 Slow-front overvoltages 56 9.1.5 Fast-front overvoltages 56 9.2 Insulation co-ordination for overvoltages 56 9.2.1 Substations in distribution systems with U_m up to 36 kV in range I 56 9.2.1 Substations in transmission systems with U_m between 52.5 kV and 245 kV in range I 56 9.2.3 Substations in transmission systems in range II. 56 9.2.3 Substations of temporary overvoltages due to earth faults 61 Annex A (informative) Determination of temporary overvoltages due to earth faults 64 B.1 General remarks 65 62 B.2 Disruptive discharge probability of external insulation 65 B.3 Cumulative frequency distribution of overvoltages 65 B.4 General remarks 71 C.1		8.4.2	Distribution lines	56
9 Special considerations for substations 57 9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltage 57 9.1.4 Slow-front overvoltages 56 9.1.5 Fast-front overvoltages 56 9.2 Insulation co-ordination for overvoltages 56 9.2.1 Substations in distribution systems with Um up to 36 kV in range I 56 9.2.2 Substations in transmission systems with Um between 52,5 kV and 245 kV in range I 56 9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 66 B.3 Cumulative frequency distribution of overvoltages 67 C.1 General remarks 71 C.1 General remarks		8.4.3	Transmission lines	57
9.1 General remarks 57 9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltage 57 9.1.4 Slow-front overvoltages 58 9.1.5 Fast-front overvoltages 58 9.2 Insulation co-ordination for overvoltages 58 9.2.1 Substations in distribution systems with U_m up to 36 kV in range 1 58 9.2.2 Substations in transmission systems with U_m between 52,5 kV and 245 kV in range 1 56 9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 65 B.3 Cumulative frequency distribution of overvoltages 71 C.1 General remarks 71 C.1 General remarks 71 C.2 Probabilit	9	Speci	al considerations for substations	57
9.1.1 Overview 57 9.1.2 Operating voltage 57 9.1.3 Temporary overvoltage 57 9.1.4 Slow-front overvoltages 58 9.1.5 Fast-front overvoltages 58 9.2 Insulation co-ordination for overvoltages 58 9.2.1 Substations in distribution systems with U_m up to 36 kV in range 1 58 9.2.2 Substations in transmission systems with U_m between 52,5 kV and 245 kV in range 1 59 9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 66 B.3 Cumulative frequency distribution of overvoltages 71 C.1 General remarks 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective overvoltage bace to e		91	General remarks	57
9.1.2 Operating voltage 57 9.1.3 Temporary overvoltage 57 9.1.4 Slow-front overvoltages 58 9.1.5 Fast-front overvoltages 58 9.2 Insulation co-ordination for overvoltages 58 9.2.1 Substations in distribution systems with Um up to 36 kV in range I 58 9.2.2 Substations in transmission systems with Um between 52,5 kV and 245 kV in range I 59 9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 66 Annex C (informative) Determination of the representative slow-front overvoltage due to line energization 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective overvoltage nergization and re-energization 71 C.2 Probability distribution of t		911	Overview	
9.1.3 Temporary overvoltage 57 9.1.4 Slow-front overvoltages 58 9.1.5 Fast-front overvoltages 58 9.2 Insulation co-ordination for overvoltages 58 9.2 Insulation co-ordination for overvoltages 58 9.2 Insulation co-ordination for overvoltages 58 9.2.1 Substations in distribution systems with U _m up to 36 kV in range I 58 9.2.2 Substations in transmission systems with U _m between 52,5 kV and 245 kV in range I 59 9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 68 Annex C (informative) Determination of the representative slow-front overvoltage due to line energization and re-energization 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of t		912	Operating voltage	
9.1.4 Slow-front overvoltages 56 9.1.5 Fast-front overvoltages 56 9.2 Insulation co-ordination for overvoltages 56 9.2 Insulations in distribution systems with Um up to 36 kV in range I 56 9.2.1 Substations in transmission systems with Um between 52,5 kV and 245 kV in range I 56 9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 68 Annex C (informative) Determination of the representative slow-front overvoltage due to line energization and re-energization 71 C.1 General remarks 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective overvoltage to earth 71		913		
9.1.5 Fast-front overvoltages 58 9.2 Insulation co-ordination for overvoltages 58 9.2.1 Substations in distribution systems with Um up to 36 kV in range I 58 9.2.2 Substations in transmission systems with Um between 52.5 kV and 245 kV in range I 59 9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 68 Annex C (informative) Determination of the representative slow-front overvoltage due to line energization and re-energization 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective overvoltage to earth 71		914	Slow-front overvoltages	58
9.2 Insulation co-ordination for overvoltages 56 9.2.1 Substations in distribution systems with Um up to 36 kV in range I 56 9.2.2 Substations in transmission systems with Um between 52,5 kV and 245 kV in range I 59 9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 68 Annex C (informative) Determination of the representative slow-front overvoltage due to line energization and re-energization 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective overvoltage phase to earth 71		9.1.4	East-front overvoltages	58
9.2.1 Substations in distribution systems with Um up to 36 kV in range I 58 9.2.2 Substations in transmission systems with Um between 52,5 kV and 245 kV in range I 59 9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 68 Annex C (informative) Determination of the representative slow-front overvoltage due to line energization and re-energization 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective overvoltage phase to earth 71		9.1.5	Insulation co-ordination for overvoltages	58
9.2.2 Substations in transmission systems with Um between 52,5 kV and 245 kV in range I 50 9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 68 Annex C (informative) Determination of the representative slow-front overvoltage due to line energization and re-energization 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective overvoltage phase to earth 71		921	Substations in distribution systems with U _m up to 36 kV in range I	58
9.2.2 Substations in transmission systems with Om between 02,0 kV and 245 kV in range I 59 9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 66 Annex C (informative) Determination of the representative slow-front overvoltage due to line energization and re-energization 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective overvoltage phase to earth 71		9.2.1	Substations in transmission systems with $I_{\rm L}$ between 52.5 kV and	
9.2.3 Substations in transmission systems in range II 60 Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 65 B.3 Cumulative frequency distribution of overvoltages 66 Annex C (informative) Determination of the representative slow-front overvoltage due to line energization and re-energization 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective overvoltage phase to earth 71		0.2.2	245 kV in range I	59
Annex A (informative) Determination of temporary overvoltages due to earth faults 61 Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 66 Annex C (informative) Determination of the representative slow-front overvoltage due to line energization and re-energization 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective overvoltage phase to earth 71		9.2.3	Substations in transmission systems in range II	60
Annex B (informative) Weibull probability distributions 65 B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 66 Annex C (informative) Determination of the representative slow-front overvoltage due to line energization and re-energization 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective overvoltage phase to earth 71	A	nnex A (informative) Determination of temporary overvoltages due to earth faults	61
B.1 General remarks 65 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 66 Annex C (informative) Determination of the representative slow-front overvoltage due 68 Annex C (informative) Determination of the representative slow-front overvoltage due 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective 71 Overvoltage phase to earth 71	Δ	nnex B (informative) Weibull probability distributions	65
B.1 General remarks 66 B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 66 Annex C (informative) Determination of the representative slow-front overvoltage due to line energization and re-energization 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective overvoltage phase to earth 71			Conoral romarka	65
B.2 Disruptive discharge probability of external insulation 66 B.3 Cumulative frequency distribution of overvoltages 68 Annex C (informative) Determination of the representative slow-front overvoltage due 71 to line energization and re-energization 71 C.1 General remarks 71 C.2 Probability distribution of the representative amplitude of the prospective 71		D.I D 0	Disruptive discharge probability of external insulation	05
Annex C (informative) Determination of the representative slow-front overvoltage due to line energization and re-energization		D.2 B 2	Cumulative frequency distribution of everyeltages	00
to line energization and re-energization	۸	D.3	informative). Determination of the representative clow front every lage due	00
C.1 General remarks	H to	line ene	rdization and re-energization	71
C.2 Probability distribution of the representative amplitude of the prospective		C 1	General remarks	71
overvoltage phase to earth 71		C.2	Probability distribution of the representative amplitude of the prospective	/ 1
		0.2	overvoltage phase-to-earth	71

C.3	Probability distribution of the representative amplitude of the prospective	71
0.4	Insulation characteristic	73
C.5	Numerical example	75
Annex D (informative) Transferred overvoltages in transformers	
	General romarka	
D.1	Transforred temperary overveltages	01 20
D.2	Capacitively transforred surges	20
D.3	Inductively transferred surges	02 8/
Anney E (informative) Lightning overvoltages	04 88
E.I	Determination of the limit distance (V)	00
E.Z	Determination of the limit distance (x_p) .	00
E.2.1	Protection with arresters in the substation	88
E.2.2		89
E.3	Estimation of the representative lightning overvoltage amplitude	90
E.3.1		90
E.3.2		90
E.3.3	Back flashovers	91
E.4	Simplified method	93
E.5	Assumed maximum value of the representative lightning overvoltage	95
Annex F (informative) Calculation of air gap breakdown strength from experimental	96
	Ganaral	06
F.1 F 2	Insulation response to power frequency voltages	90
г.2 Е 3	Insulation response to power-nequency voltages	90
F 4	Insulation response to fast-front overvoltages	97 Q8
Anney G ((informative) Examples of insulation co-ordination procedure	102
		102
G.I	Overview	102
G.Z	Numerical example for a system in range r (with hominal voltage of 250 kV)	102
G.2.1		102
G.Z.Z	Part 1. no special operating conditions	103
G.2.3	Part 2: Innuence of capacitor switching at station 2	110
G.2.4	Part 3: flow charts related to the example of Clause G.2	112
G.3	Numerical example for a system in range if (with nominal voltage of 755 kV)	/
G.3.1	General	117
G.3.2	values of Urn	117
G 3 3	Step 2: determination of the co-ordination withstand voltages –	
0.0.0	values of $U_{\rm CW}$	118
G.3.4	Step 3: determination of the required withstand voltages – values of	
	U _{rw}	119
G.3.5	5 Step 4: conversion to switching impulse withstand voltages (SIWV)	120
G.3.6	Step 5: selection of standard insulation levels	120
G.3.7	Considerations relative to phase-to-phase insulation co-ordination	121
G.3.8	Phase-to-earth clearances	122
G.3.9	Phase-to-phase clearances	122
G.4	Numerical example for substations in distribution systems with $U_{\rm m}$ up to	100
~ • • •	36 KV In range I	123
G.4.1	General	123

G.4.2	Step 1: determination of the representative overvoltages –	400
G 4 3	Values of U _{rp}	123
9.4.3	values of $U_{\rm CW}$	124
G.4.4	Step 3: determination of required withstand voltages – values of $U_{\rm rw}$	125
G.4.5	Step 4: conversion to standard short-duration power-frequency and	
7	lightning impulse withstand voltages	126
G.4.6	Step 5: selection of standard withstand voltages	126
G.4.7	Summary of insulation co-ordination procedure for the example of Clause G 4	127
Annex H (informative) Atmospheric correction – Altitude correction	129
Н.1	General principles	129
H.1.1	Atmospheric correction in standard tests	129
H.1.2	Task of atmospheric correction in insulation co-ordination	130
H.2	Atmospheric correction in insulation co-ordination	132
H.2.1	Factors for atmospheric correction	132
H.2.2	General characteristics for moderate climates	132
H.2.3	Special atmospheric conditions	133
H.2.4	Altitude dependency of air pressure	134
H.3	Altitude correction	135
H.3.1	Definition of the altitude correction factor	135
H.3.2	Principle of altitude correction	136
H.3.3	Standard equipment operating at altitudes up to 1 000 m	137
H.3.4	Equipment operating at altitudes above 1 000 m	137
H.4	Selection of the exponent <i>m</i>	138
H.4.1	General	138
H.4.2	Derivation of exponent m for switching impulse voltage	138
H.4.3	Derivation of exponent <i>m</i> for critical switching impulse voltage	141
Annex I (in for represe	nformative) Evaluation method of non-standard lightning overvoltage shape entative voltages and overvoltages	144
I.1	General remarks	144
1.2	Lightning overvoltage shape	144
1.3	Evaluation method for GIS	144
I.3.1	Experiments	144
1.3.2	Evaluation of overvoltage shape	145
1.4	Evaluation method for transformer	145
I.4.1	Experiments	145
1.4.2	Evaluation of overvoltage shape	145
Annex J (i	nformative) Insulation co-ordination for very-fast-front overvoltages in UHV	
substation	IS	152
J.1	General	152
J.2	Influence of disconnector design	152
J.3	Insulation co-ordination for VFFO	153
Bibliograp	hy	155
Figure 1 – energizati	 Range of 2 % slow-front overvoltages at the receiving end due to line on and re-energization 	25
Figure 2 -	- Ratio between the 2 % values of slow-front overvoltages phase-to-phase	

Figure 4 – Distributive discharge probability of self-restoring insulation described on a linear scale	41
Figure 5 – Disruptive discharge probability of self-restoring insulation described on a Gaussian scale	41
Figure 6 – Evaluation of deterministic co-ordination factor K_{cd}	42
Figure 7 – Evaluation of the risk of failure	43
Figure 8 – Risk of failure of external insulation for slow-front overvoltages as a function of the statistical co-ordination factor K_{cs}	45
Figure 9 – Dependence of exponent <i>m</i> on the co-ordination switching impulse withstand voltage	47
Figure 10 – Probability P of an equipment to pass the test dependent on the difference K between the actual and the rated impulse withstand voltage	53
Figure 11 – Example of a schematic substation layout used for the overvoltage stress location	57
Figure A.1 – Earth fault factor k on a base of X_0/X_1 for $R_1/X_1 = R = 0$	62
Figure A.2 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = 0$	62
Figure A.3 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = 0.5 X_1$	63
Figure A.4 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = X_1$	63
Figure A.5 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = 2X_1$	64
Figure B.1 – Conversion chart for the reduction of the withstand voltage due to placing insulation configurations in parallel	70
Figure C.1 – Example for bivariate phase-to-phase overvoltage curves with constant probability density and tangents giving the relevant 2 % values	77
Figure C.2 – Principle of the determination of the representative phase-to-phase overvoltage U_{pre}	78
Figure C.3 – Schematic phase-phase-earth insulation configuration	79
Figure C.4 – Description of the 50 % switching impulse flashover voltage of a phase- phase-earth insulation	79
Figure C.5 – Inclination angle of the phase-to-phase insulation characteristic in range "b" dependent on the ratio of the phase-phase clearance D to the height H_{t} above earth	80
Figure D.1 – Distributed capacitances of the windings of a transformer and the equivalent circuit describing the windings	86
Figure D.2 – Values of factor <i>J</i> describing the effect of the winding connections on the inductive surge transference	87
Figure H.1 – Principle of the atmospheric correction during test of a specified insulation level according to the procedure of IEC 60060-1	. 130
Figure H.2 – Principal task of the atmospheric correction in insulation co-ordination according to IEC 60071-1	. 131
Figure H.3 – Comparison of atmospheric correction $\delta \times k_h$ with relative air pressure p/p_0 for various weather stations around the world	. 133
Figure H.4 – Deviation of simplified pressure calculation by exponential function in this document from the temperature dependent pressure calculation of ISO 2533	. 135
Figure H.5 – Principle of altitude correction: decreasing withstand voltage U_{10} of equipment with increasing altitude	. 136

Figure H.6 – Sets of <i>m</i> -curves for standard switching impulse voltage including the variations in altitude for each gap factor	140
Figure H.7 – Exponent <i>m</i> for standard switching impulse voltage for selected gap factors covering altitudes up to 4 000 m	141
Figure H.8 – Sets of <i>m</i> -curves for critical switching impulse voltage including the variations in altitude for each gap factor	142
Figure H.9 – Exponent m for critical switching impulse voltage for selected gap factors covering altitudes up to 4 000 m	142
Figure H.10 – Accordance of m -curves from Figure 9 with determination of exponent m by means of critical switching impulse voltage for selected gap factors and altitudes	143
Figure I.1 – Examples of lightning overvoltage shapes	147
Figure I.2 – Example of insulation characteristics with respect to lightning overvoltages of the SF ₆ gas gap (Shape E)	148
Figure I.3 – Calculation of duration time T_d	148
Figure I.4 – Shape evaluation flow for GIS and transformer	149
Figure I.5 – Application to GIS lightning overvoltage	150
Figure I.6 – Example of insulation characteristics with respect to lightning overvoltage of the turn-to-turn insulation (Shape C)	150
Figure I.7 – Application to transformer lightning overvoltage	151
Figure J.1 – Insulation co-ordination for very-fast-front overvoltages	154
Table 1 – Test conversion factors for range I, to convert required SIWV to SDWV and LIWV	51
Table 2 – Test conversion factors for range II to convert required SDWV to SIWV	51
Table 3 – Selectivity of test procedures B and C of IEC 60060-1	53
Table B.1 – Breakdown voltage versus cumulative flashover probability – Single insulation and 100 parallel insulations	67
Table E.1 – Corona damping constant K _{co}	89
Table E.2 – Factor A for various overhead lines	94
Table F.1 – Typical gap factors K for switching impulse breakdown phase-to-earth (according to [1] and [4])	100
Table F.2 – Gap factors for typical phase-to-phase geometries	101
Table G.1 – Summary of minimum required withstand voltages obtained for the example shown in G.2.2.	109
Table G.2 – Summary of required withstand voltages obtained for the example shown in G.2.3.	111
Table G.3 – Values related to the insulation co-ordination procedure for the example in G.4.	128
Table H.1 – Comparison of functional expressions of Figure 9 with the selected parameters from the derivation of <i>m</i> -curves with critical switching impulse	143
Table I.1 – Evaluation of the lightning overvoltage in the GIS of UHV system	148
Table I.2 – Evaluation of lightning overvoltage in the transformer of 500 kV system	151

INSULATION CO-ORDINATION –

Part 2: Application guidelines

1 Scope

This part of IEC 60071 constitutes application guidelines and deals with the selection of insulation levels of equipment or installations for three-phase electrical systems. Its aim is to give guidance for the determination of the rated withstand voltages for ranges I and II of IEC 60071-1 and to justify the association of these rated values with the standardized highest voltages for equipment.

This association is for insulation co-ordination purposes only. The requirements for human safety are not covered by this document.

This document covers three-phase systems with nominal voltages above 1 kV. The values derived or proposed herein are generally applicable only to such systems. However, the concepts presented are also valid for two-phase or single-phase systems.

This document covers phase-to-earth, phase-to-phase and longitudinal insulation.

This document is not intended to deal with routine tests. These are to be specified by the relevant product committees.

The content of this document strictly follows the flow chart of the insulation co-ordination process presented in Figure 1 of IEC 60071-1:2006. Clauses 4 to 7 correspond to the squares in this flow chart and give detailed information on the concepts governing the insulation co-ordination process which leads to the establishment of the required withstand levels.

This document emphasizes the necessity of considering, at the very beginning, all origins, all classes and all types of voltage stresses in service irrespective of the range of highest voltage for equipment. Only at the end of the process, when the selection of the standard withstand voltages takes place, does the principle of covering a particular service voltage stress by a standard withstand voltage apply. Also, at this final step, this document refers to the correlation made in IEC 60071-1 between the standard insulation levels and the highest voltage for equipment.

The annexes contain examples and detailed information which explain or support the concepts described in the main text, and the basic analytical techniques used.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60060-1:2010, High-voltage test techniques – Part 1: General definitions and test requirements

IEC 60071-1:2006, *Insulation co-ordination – Part 1: Definitions, principles and rules* IEC 60071-1:2006/AMD1:2010