Raudteealased rakendused. Energiamõõtmised rongides. Osa 2: Energiamõõtmised

Railway applications - Energy measurement on board trains In uring - Part 2: Energy measuring

FESTI STANDARDI FESSÕNA

NATIONAL FOREWORD

Käesolev Eesti standard EVS-EN 50463-2:2013 sisaldab Euroopa standardi EN 50463-2:2012 ingliskeelset teksti.

This Estonian standard EVS-EN 50463-2:2013 consists of the English text of the European standard EN 50463-2:2012.

Standard on kinnitatud Eesti Standardikeskuse 31.01.2013 käskkirjaga ja jõustub sellekohase teate avaldamisel EVS Teatajas.

This standard is ratified with the order of Estonian Centre for Standardisation dated 31.01.2013 and is endorsed with the notification published in the official bulletin of the Estonian national standardisation organisation.

Euroopa standardimisorganisatsioonide poolt rahvuslikele liikmetele Euroopa standardi teksti kättesaadavaks tegemise kuupäev on 21.12.2012.

Date of Availability of the European standard text 21.12.2012.

Standard on kättesaadav Eesti standardiorganisatsioonist.

The standard is available from Estonian standardisation organisation.

ICS 45,060,10

Standardite reprodutseerimis- ja levitamisõigus kuulub Eesti Standardikeskusele

Andmete paljundamine, taastekitamine, kopeerimine, salvestamine elektroonilisse süsteemi või edastamine ükskõik millises vormis või millisel teel on keelatud ilma Eesti Standardikeskuse poolt antud kirjaliku loata.

Kui Teil on küsimusi standardite autorikaitse kohta, palun võtke ühendust Eesti Standardikeskusega: Aru 10 Tallinn 10317 Eesti; www.evs.ee; Telefon: 605 5050; E-post: info@evs.ee

Right to reproduce and distribute belongs to the Estonian Centre for Standardisation

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without permission in writing from Estonian Centre for Standardisation.

If you have any questions about standards copyright, please contact Estonian Centre for Standardisation: Aru str 10 Tallinn 10317 Estonia; www.evs.ee; Phone: 605 5050; E-mail: info@evs.ee

EUROPEAN STANDARD

EN 50463-2

NORME EUROPÉENNE EUROPÄISCHE NORM

December 2012

ICS 45.060.10

Supersedes EN 50463:2007 (partially)

English version

Railway applications Energy measurement on board trains Part 2: Energy measuring

Applications ferroviaires -Mesure d'énergie à bord des trains -Partie 2 : Mesure d'énergie Bahnanwendungen -Energiemessung auf Bahnfahrzeugen -Teil 2: Energiemessung

This European Standard was approved by CENELEC on 2012-10-15. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels

Contents

For	reword .		5
Inti	roductio	on	6
1	Scope.		8
2	Normat	ive references	9
3	Terms,	definitions, abbreviations and symbols	10
	3.1	Terms and definitions	10
	3.2	Abbreviations	13
	3.3	Symbols	14
4	Require	ements	14
	4.1	General	14
	4.2	Energy Measurement Function (EMF)	15
	4.3	Sensors	19
	4.4	Energy Calculation Function (ECF)	31
5	Confor	mity assessment	42
	5.1	General	42
	5.2	Testing framework	43
	5.3	Design review	44
	5.4	Type testing	45
	5.5	Routine test	68
An	nex A (r	normative) Test with magnetic induction of external origin	71
An	nex B (r	normative) EMF Configurations	73
	B.1	Background	73
	B.2	General	
	B.3	EMF with several CMF's in parallel	
	B.4	EMF with several VMF's connected to one ECF	74
	B.5	EMF with several pairs of VMF and CMF	
	B.6	Several EMF's in parallel	
	B.7	One VMF or CMF connected to several ECFs	
	B.8	EMF without VMF	76
An	nex C (i	nformative) Expressing EMF accuracy	77
	C.1	Summary	77
	C.2	Error limits or uncertainty	
	C.3	Presentation of error limits	
	C.4	Uncertainty calculations	79
An	nex D (i	nformative) Re-verification and defining of its regime recommendations	84
	D.1	Re-verification	84
	D.2	Defining re-verification regime recommendations	

Annex E	(informative) Durability test	87
É.1	Durability test	87
Annex Z	Z (informative) Coverage of Essential Requirements of EU Directives	91
Bibliogra	phy	92
Figures		
_	- EMS functional structure and dataflow diagram	7
•	- EMF functional block diagram	
•	- Example of energy index value	
•		11
1,0 R with	- Example of maximum percentage error for a VMF of class 0,5 R and a VMF of class in input signal in the range $U_{min1} \le U \le U_{max2}$	24
	– Example of maximum percentage error for a CMF class 1,0 R a.c. with input signals ge 10 % $I_n \le I \le$ 120 % I_n , 5 % $I_n \le I <$ 10 % I_n and 1 % $I_n \le I <$ 5 % I_n	29
Figure 6 -	- Primary current and voltage ranges	36
	- Example of maximum percentage error for an ECF of class 0,5 R and an ECF of R with input signals in Area 1 and Area 2	38
Figure 8 -	- Test point matrix for ECF accuracy tests (type test)	59
Figure 9 -	- Test point matrix for tests of ambient temperature variation and influence quantities	60
	Test circuit diagram for determining the influence on accuracy of odd harmonics or onics in the current circuit	63
	– Phase-fired waveform (shown for 50 Hz)	
•	– Analysis of harmonic content of phase-fired waveform (shown for 50 Hz)	
•	– Burst fire waveform (shown for 50 Hz)	
	– Analysis of harmonics (shown for 50 Hz)	
_	- Test point matrix for ECF Accuracy Tests (type test)	
	1 – Test configuration for test method 1	
	2 – Test configuration for test method 2	
Figure B	1 – EMF with several CMF's in parallel	73
	2 – EMF with several VMF's connected to one ECF	
Figure B	3 – EMF with several pairs of VMF and CMF	75
Figure B	4 – EMF with several ECF's	75
	5 – One VMF connected to two ECF's	
	6 – EMF without VMF	
riguic b.	0 - Livii Widiodi Vivii	70
Tables		
Table 1 –	Nominal traction supply system voltages	16
	Reference conditions	
Table 3 –	EMF percentage error limits	18
Table 4 –	Percentage error limits - voltage sensor	23
Table 5 –	Maximum percentage error for a VMF including ambient temperature variation	23
Table 6 –	Temperature coefficient for VMF	24
	Influence quantities for voltage sensors	
Table 8 –	Percentage error limits – a.c. current sensor	28

Table 9 – Percentage error limits – d.c. current sensor	28
Table 10 – Maximum percentage error for a CMF including ambient temperature variation	29
Table 11 – Temperature coefficient for CMF	30
Table 12 – Percentage error limits with harmonics – a.c. current sensor	30
Table 13 – Influence quantities for current sensors	31
Table 14 – Variations due to short-time overcurrents	35
Table 15 – Variations due to self-heating	35
Table 16 – ECF percentage error limits for active energy	36
Table 17 – Maximum percentage error for an ECF including ambient temperature variation	37
Table 18 – Temperature coefficient for the ECF	38
Table 19 – Influence quantities for the ECF	39
Table 20 – Test current for harmonics	52
Table 20 – Test current for harmonics	
6.	
	70
	O_{λ}

Foreword

This document (EN 50463-2:2012) has been prepared by CLC/TC9X "Electrical and electronic applications for railways".

The following dates are proposed:

- latest date by which this document has to be (dop) 2013-10-15 implemented at national level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with this document have to be withdrawn

This document (EN 50463-2:2012), together with parts 1, 3, 4 and 5, supersedes EN 50463:2007.

EN 50463-1:2012 includes the following significant technical changes with respect to EN 50463:2007:

- the series is based on and supersedes EN 50463:2007:
- the scope is extended, new requirements are introduced and conformity assessment arrangements are added.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s).

For relationship with EU Directive 2008/57/EC amended by Commission Directive 2011/18/EU, see informative Annex ZZ, which is an integral part of this document.

This document is Part 2 of the EN 50463 series which consists of the following parts, under the common title *Railway applications - Energy measurement on board trains*:

Part 1, General;

Part 2, Energy measuring;

Part 3, Data handling;

Part 4, Communication;

Part 5, Conformity assessment.

EN 50463-2 follows the functional guidelines description in Annex A "Principles of conformity assessment" of EN ISO/IEC 17000 tailored to the Energy Measurement System (EMS).

The requirements for Energy Measurement Systems in the relevant Technical Specifications for Interoperability are supported by this series of European Standards.

Introduction

The Energy Measurement System provides measurement and data suitable for billing and may also be used for energy management, e.g. energy saving.

This series of European Standards uses the functional approach to describe the Energy Measurement System. These functions are implemented in one or more physical devices. The user of this series of standards is free to choose the physical implementation arrangements.

Structure and main contents of the EN 50463 series

This series of European Standards is divided into five parts. The titles and brief descriptions of each part are given below:

EN 50463-1 - General

The scope of EN 50463-1 is the Energy Measurement System (EMS).

EN 50463-1 provides system level requirements for the complete EMS and common requirements for all devices implementing one or more functions of the EMS.

EN 50463-2 - Energy measuring

The scope of EN 50463-2 is the Energy Measurement Function (EMF).

The EMF provides measurement of the consumed and regenerated active energy of a traction unit. If the traction unit is designed for use on a.c. traction supply systems the EMF also provides measurement of reactive energy. The EMF provides the measured quantities via an interface to the Data Handling System.

The EMF consists of the three functions: Voltage Measurement Function, Current Measurement Function and Energy Calculation Function. For each of these functions, accuracy classes are specified and associated reference conditions are defined. This part also defines all specific requirements for all functions of the EMF.

The Voltage Measurement Function measures the voltage of the Contact Line system and the Current Measurement Function measures the current taken from and returned to the Contact Line system. These functions provide signal inputs to the Energy Calculation Function.

The Energy Calculation Function inputs the signals from the Current and Voltage Measurement Functions and calculates a set of values representing the consumed and regenerated energies. These values are transferred to the Data Handling System and are used in the creation of Compiled Energy Billing Data.

The standard has been developed taking into account that in some applications the EMF may be subjected to legal metrological control. All relevant metrological aspects are covered in this part of EN 50463.

EN 50463-2 also defines the conformity assessment of the EMF.

EN 50463-3 - Data handling

The scope of EN 50463-3 is the Data Handling System (DHS).

The on board DHS receives, produces and stores data, ready for transmission to any authorised receiver of data on board or on ground. The main goal of the DHS is to produce Compiled Energy Billing Data and transfer it to an on ground Data Collection Service (DCS). The DHS can support other functionality on board or on ground with data, as long as this does not conflict with the main goal.

EN 50463-3 also defines the conformity assessment of the DHS.

EN 50463-4 - Communication

The scope of EN 50463-4 is the communication services.

Part 4 of EN 50463 gives requirements and guidance regarding the data communication between the functions implemented within EMS as well as between such functions and other on board units where data are exchanged using a communications protocol stack over a dedicated physical interface or a shared network.

It includes the on board to ground communication service and covers the requirements necessary to support data transfer between DHS and DCS.

EN 50463-4 also defines the conformity assessment of the communications services.

EN 50463-5 - Conformity assessment

The scope of EN 50463-5 is the conformity assessment procedures for the EMS.

EN 50463-5 also covers re-verification procedures and conformity assessment in the event of the replacement of a device of the EMS.

EMS functional structure and dataflow

Figure 1 illustrates the functional structure of the EMS, the main sub-functions and the structure of the dataflow and is informative only. Only the main interfaces required by this standard are displayed by arrows.

Because the communication function is distributed throughout the EMS, it has been omitted for clarity. Not all interfaces are shown.

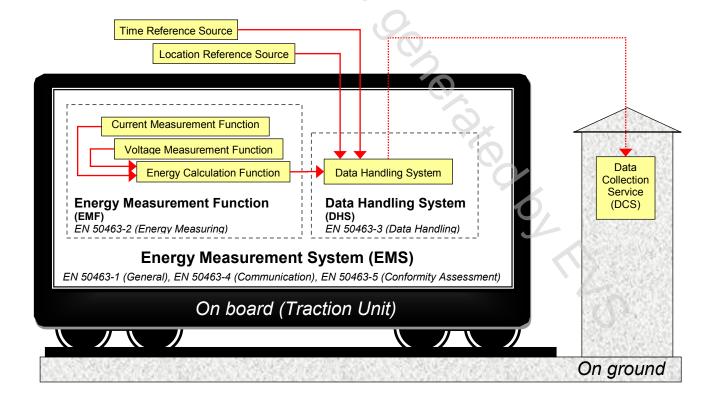


Figure 1 - EMS functional structure and dataflow diagram

1 Scope

This European Standard covers the requirements applicable to the Energy Measurement Function (EMF) of an Energy Measurement System (EMS) for use on board traction units for measurement of energy supplied directly from/to the Contact Line system.

This European Standard also gives requirements for the Current Measurement Function (e.g. current sensor), the Voltage Measurement Function (e.g. voltage sensor) and the Energy Calculation Function (e.g. energy meter).

The Conformity Assessment arrangements for the Voltage Measurement Function, Current Measurement Function, the Energy Calculation Function and a complete Energy Measurement Function are also specified in this document.

The standard has been developed taking into account that in some applications the EMF may be subjected to legal metrological control. All relevant metrological aspects are covered in this part.

Figure 2 shows the flow between the functional blocks of the EMF. Only connections between the functional blocks required by this standard are displayed.

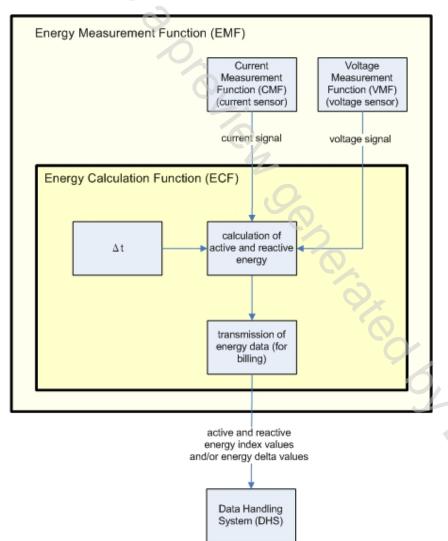


Figure 2 - EMF functional block diagram

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

CEN/TS 45545-2:2009, Railway applications — Fire protection on railway vehicles — Part 2: Requirements for fire behaviour of materials and components

CLC/TS 45545-5:2009, Railway applications — Fire protection on railway vehicles — Part 5: Fire safety requirements for electrical equipment including that of trolley buses, track guided buses and magnetic levitation vehicles

EN 50121-1:2006, Railway applications — Electromagnetic compatibility — Part 1: General

EN 50121-3-2:2006, Railway applications — Electromagnetic compatibility — Part 3-2: Rolling stock — Apparatus

EN 50123-1:2003, Railway applications — Fixed installations — D.C. switchgear — Part 1: General

EN 50124-1:2001, Railway applications — Insulation coordination — Part 1: Basic requirements — Clearances and creepage distances for all electrical and electronic equipment

EN 50125-1, Railway applications — Environmental conditions for equipment — Part 1: Equipment on board rolling stock

EN 50155:2007, Railway applications — Electronic equipment used on rolling stock

EN 50163:2004, Railway applications — Supply voltages of traction systems

EN 50388:2005, Railway applications — Power supply and rolling stock — Technical criteria for the coordination between power supply (substation) and rolling stock to achieve interoperability

EN 50463-1:2012, Railway applications — Energy measurement on board trains — Part 1: General

EN 50463-3:2012, Railway applications — Energy measurement on board trains — Part 3: Data handling

EN 50463-4:2012, Railway applications — Energy measurement on board trains — Part 4: Communication

EN 50463-5:2012, Railway applications — Energy measurement on board trains —Part 5: Conformity assessment

EN 60044 (all parts), Instrument transformers (IEC 60044, all parts)

EN 60068-2-1:2007, Environmental testing — Part 2-1: Tests — Test A: Cold (IEC 60068-2-1:2007)

EN 60068-2-2:2008, *Environmental testing* — *Part 2-2: Tests* — *Test B: Dry heat (IEC 60068-2-2:2007)*

EN 60068-2-30:2005, Environmental testing — Part 2-30: Tests — Test Test Db: Damp heat, cyclic (12 h + 12 h cycle) (IEC 60068-2-30:2005)

EN 60077-4:2003, Railway applications — Electric equipment for rolling stock — Part 4: Electrotechnical components — Rules for AC circuit-breakers (IEC 60077-4:2003)

EN 60085:2008, Electrical insulation — Thermal evaluation and designation (IEC 60085:2007)

EN 60529:1991+A1:2000, Degrees of protection provided by enclosures (IP Code) (IEC 60529:1989+A1:1999)

EN 61000-4-2:2009, Electromagnetic compatibility (EMC) — Part 4-2: Testing and measurement techniques — Electrostatic discharge immunity test (IEC 61000-4-2:2008)

EN 61000-4-3:2006+A1:2008, Electromagnetic compatibility (EMC) — Part 4-3: Testing and measurement techniques — Radiated, radio-frequency, electromagnetic field immunity test (IEC 61000-4-3:2006+A1:2007)

EN 61000-4-4:2004, Electromagnetic compatibility (EMC) — Part 4-4: Testing and measurement techniques — Electrical fast transient/burst immunity test (IEC 61000-4-4:2004)

EN 61000-4-5:2006, Electromagnetic compatibility (EMC) — Part 4-5: Testing and measurement techniques — Surge immunity test (IEC 61000-4-5:2005)

EN 61000-4-6:2009, Electromagnetic compatibility (EMC) — Part 4-6: Testing and measurement techniques — Immunity to conducted disturbances, induced by radio-frequency fields (IEC 61000-4-6:2008)

EN 61373:2010, Railway applications — Rolling stock equipment — Shock and vibration tests (IEC 61373:2010)

IEC 60028:1925, International standard of resistance for copper

IEC 60121:1960, Recommendation for commercial annealed aluminium electrical conductor wire

3 Terms, definitions, abbreviations and symbols

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in EN 50463-1:2012 and the following apply.

NOTE When possible, the following definitions have been taken from the relevant chapters of the International Electrotechnical Vocabulary (IEV), IEC 60050-311, IEC 60050-312, IEC 60050-313, IEC 60050-314, IEC 60050-321 and IEC 60050-811. In such cases, the appropriate IEV reference is given. Certain new definitions or modifications of IEV definitions have been added in this standard in order to facilitate understanding. Expression of the performance of electrical and electronic measuring equipment has been taken from EN 60359.

3.1.1

accuracy class

designation that identifies a set of error limits for measured quantities under reference conditions and the additional percentage errors due to influence quantities

Note 1 to entry: An individual accuracy class is associated with each metrological function of the EMF

Note 2 to entry: The suffix "R" is used to differentiate classes according to this standard from other technical standards.

3.1.2

consumed active energy

active energy taken from the Contact Line by the traction unit on which the EMF is installed

3.1.3

consumed reactive energy

reactive energy taken from the Contact Line by the traction unit on which the EMF is installed

3.1.4

electronic sensor

device in which electronic circuits are used to process a measured signal