Surge arresters - Part 8: Metal-oxide surge arresters with external series gap (EGLA) for overhead transmission and distribution lines of a.c. systems above 1 kV
NATIONAL FOREWORD

This Estonian standard EVS-EN 60099-8:2011 consists of the English text of the European standard EN 60099-8:2011.

This standard is ratified with the order of Estonian Centre for Standardisation dated 30.04.2011 and is endorsed with the notification published in the official bulletin of the Estonian national standardisation organisation.

The standard is available from Estonian standardisation organisation.

Date of Availability of the European standard text 15.04.2011.

ICS 29.240.10
Surge arresters -
Part 8: Metal-oxide surge arresters with external series gap (EGLA) for overhead transmission and distribution lines of a.c. systems above 1 kV (IEC 60099-8:2011)
Foreword

The text of document 37/370/FDIS, future edition 1 of IEC 60099-8, prepared by IEC TC 37, Surge arresters, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 60099-8 on 2011-03-03.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent rights.

The following dates were fixed:

- latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement (dop) 2011-12-03
- latest date by which the national standards conflicting with the EN have to be withdrawn (dow) 2014-03-03

Annex ZA has been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 60099-8:2011 was approved by CENELEC as a European Standard without any modification.
Annex ZA
(normative)

Normative references to international publications
with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Year</th>
<th>Title</th>
<th>EN/HD</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60060-1</td>
<td>1989</td>
<td>High-voltage test techniques - Part 1: General definitions and test requirements</td>
<td>HD 588.1 S1(^1)</td>
<td>1991</td>
</tr>
<tr>
<td>IEC 60068-2-14</td>
<td>2009</td>
<td>Environmental testing - Part 2-14: Tests - Test N: Change of temperature</td>
<td>EN 60068-2-14</td>
<td>2009</td>
</tr>
<tr>
<td>IEC 60099-4 (mod) + A1+A2</td>
<td>2004</td>
<td>Surge arresters - Part 4: Metal-oxide surge arresters without gaps for a.c. systems</td>
<td>EN 60099-4</td>
<td>2004</td>
</tr>
<tr>
<td>IEC 60270</td>
<td>2000</td>
<td>High-voltage test techniques - Partial discharge measurements</td>
<td>EN 60270</td>
<td>2001</td>
</tr>
<tr>
<td>IEC 60507</td>
<td>1991</td>
<td>Artificial pollution tests on high-voltage insulators to be used on a.c. systems</td>
<td>EN 60507</td>
<td>1993</td>
</tr>
<tr>
<td>IEC/TS 60815-1</td>
<td>2008</td>
<td>Selection and dimensioning of high-voltage insulators intended for use in polluted conditions - Part 1: Definitions, information and general principles</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IEC 62217</td>
<td>2005</td>
<td>Polymeric insulators for indoor and outdoor use with a nominal voltage > 1 000 V - General definitions, test methods and acceptance criteria</td>
<td>EN 62217</td>
<td>2006</td>
</tr>
<tr>
<td>ISO 3274</td>
<td>-</td>
<td>Geometrical Product Specifications (GPS) - Surface texture: Profile method - Nominal characteristics of contact (stylus) instruments</td>
<td>EN ISO 3274</td>
<td>-</td>
</tr>
<tr>
<td>ISO 4287</td>
<td>-</td>
<td>Geometrical Product Specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters</td>
<td>EN ISO 4287</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^1\) HD 588.1 S1 is superseded by EN 60060-1:2010, which is based on IEC 60060-1:2010.
\(^2\) EN 60060-2 is superseded by EN 60060-2:2011, which is based on IEC 60060-2:2010.
<table>
<thead>
<tr>
<th>Publication</th>
<th>Year</th>
<th>Title</th>
<th>EN/HD</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 4892-1</td>
<td>-</td>
<td>Plastics - Methods of exposure to laboratory light sources -</td>
<td>EN ISO 4892-1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part 1: General guidance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 4892-2</td>
<td>-</td>
<td>Plastics - Methods of exposure to laboratory light sources -</td>
<td>EN ISO 4892-2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part 2: Xenon-arc lamps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 4892-3</td>
<td>-</td>
<td>Plastics - Methods of exposure to laboratory light sources -</td>
<td>EN ISO 4892-3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part 3: Fluorescent UV lamps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

FOREWORD ... 5
INTRODUCTION .. 7
1 Scope... 8
2 Normative references .. 8
3 Terms and definitions .. 9
4 Identification and classification .. 11
4.1 EGLA Identification.. 11
4.2 EGLA classification .. 12
5 Standard ratings and service conditions .. 12
5.1 Standard rated voltages .. 12
5.2 Standard rated frequencies ... 13
5.3 Standard nominal discharge currents ... 13
5.4 Service conditions.. 13
5.4.1 Normal service conditions ... 13
5.4.2 Abnormal service conditions ... 13
6 Requirements .. 13
6.1 Insulation withstand of the SVU and the complete EGLA .. 13
6.1.1 Insulation withstand of the housing of the SVU ... 13
6.1.2 Insulation withstand of EGLA with shorted (failed) SVU .. 13
6.2 Residual voltages... 14
6.3 High current duty .. 14
6.4 Lightning discharge capability ... 14
6.5 Short-circuit performance of the SVU .. 14
6.6 Mechanical performance ... 14
6.7 Weather aging of SVU .. 15
6.8 Reference voltage of the SVU .. 15
6.9 Internal partial discharges ... 15
6.10 Coordination between insulator withstand and EGLA protective level 15
6.11 Follow current interrupting .. 15
6.12 Electromagnetic compatibility .. 15
6.13 End of life ... 16
7 General testing procedure .. 16
7.1 Measuring equipment and accuracy .. 16
7.2 Test samples .. 16
8 Type tests ... 16
8.1 General ... 16
8.2 Insulation withstand tests on the SVU housing and on the EGLA with failed SVU 17
8.2.1 General ... 17
8.2.2 Insulation withstand test on the SVU housing ... 17
8.2.3 Insulation withstand tests on EGLA with failed SVU .. 18
8.3 Residual voltage tests ... 19
8.3.1 General ... 19
8.3.2 Procedure for correction and calculation of inductive voltages 19
8.3.3 Lightning current impulse residual voltage test .. 20
10 Acceptance tests ... 50
 10.1 General .. 50
 10.2 Reference voltage measurement of SVU .. 50
 10.3 Internal partial discharge test of SVU .. 50
 10.4 Radio interference voltage (RIV) test .. 50
 10.5 Test for coordination between insulator withstand and EGLA protective level 51
 10.5.1 General .. 51
 10.5.2 Front-of-wave impulse sparkover test ... 51
 10.5.3 Standard lightning impulse sparkover test .. 51
 10.6 Follow current interrupting test ... 52
 10.6.1 General .. 52
 10.6.2 Test procedure .. 52
 10.6.3 Test sequence .. 52
10.6.4 Test evaluation .. 52
10.7 Vibration test on the SVU with attached electrode .. 52
 10.7.1 Test procedure and test condition ... 53
 10.7.2 Test evaluation .. 53
Annex A (informative) Example of a test circuit for the follow current interrupting test ... 54
Annex B (normative) Mechanical considerations .. 55
Bibliography ... 60

Figure 1 – Configuration of an EGLA with insulator and arcing horn .. 7
Figure 2 – Examples of SVU units ... 32
Figure 3 – Short-circuit test setup ... 33
Figure 4 – Example of a test circuit for re-applying pre-failing circuit immediately before applying the short-circuit test current ... 34
Figure 5 – Thermo-mechanical test ... 43
Figure 6 – Example of the test arrangement for the thermo-mechanical test and direction of the cantilever load .. 44
Figure 7 – Test sequence of the water immersion test .. 45
Figure A.1 – Example of a test circuit for the follow current interrupting test 54
Figure B.1 – Bending moment – Multi-unit SVU ... 55
Figure B.2 – SVU unit ... 57
Figure B.3 – SVU dimensions ... 58

Table 1 – EGLA classification – “Series X” and “Series Y” .. 12
Table 2 – Steps of rated voltages (r.m.s. values) ... 12
Table 3 – Type tests (all tests to be performed without insulator assembly) 17
Table 4 – Test requirements .. 30
Table 5 – Required currents for short-circuit tests ... 31
Table 6 – Acceptance tests .. 50
Table 7 – Virtual steepness of wave front of front-of-wave lightening impulses 51
INTRODUCTION

This part of IEC 60099 applies to the externally gapped line arrester (EGLA).

This type of surge arrester is connected directly in parallel with an insulator assembly. It comprises a series varistor unit (SVU), made up from non-linear metal-oxide resistors encapsulated in a polymer or porcelain housing, and an external series gap, see Figure 1.

The purpose of an EGLA is to protect the parallel-connected insulator assembly from lightning-caused overvoltages. The external series gap, therefore, should spark over only due to fast-front overvoltages. The gap should withstand all power-frequency and slow-front overvoltages occurring on the system.

In the event of SVU failure, the external series gap should be able to isolate the SVU from the system.

Figure 1 – Configuration of an EGLA with insulator and arcing horn
1 Scope

This part of IEC 60099 covers metal-oxide surge arresters with external series gap (externally gapped line arresters (EGLA) that are applied on overhead transmission and distribution lines, only to protect insulator assemblies from lightning-caused flashovers.

This standard defines surge arresters to protect the insulator assembly from lightning-caused overvoltages only. Therefore, and since the metal-oxide resistors are not permanently connected to the line, the following items are not considered for this standard:

- switching impulse sparkover voltage;
- residual voltage at steep current and switching current impulse;
- thermal stability;
- long-duration current impulse withstand duty;
- power-frequency voltage versus time characteristics of an arrester;
- disconnector test;
- aging duties by power-frequency voltage.

Considering the particular design concept and the special application on overhead transmission and distribution lines, some unique requirements and tests are introduced, such as the verification test for coordination between insulator withstand and EGLA protective level, the follow current interrupting test, mechanical load tests, etc.

Designs with the EGLA’s external series gap installed in parallel to an insulator are not covered by this standard.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60060-1:1989, High-voltage test techniques – Part 1: General definitions and test requirements

IEC 60099-4:2009, Surge arresters – Part 4: Metal-oxide surge arresters without gaps for a.c. systems
3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 externally gapped line arrester
EGLA
arrester designed for installation on overhead lines to protect an insulator assembly from lightning-caused fast-front overvoltages only

NOTE This is accomplished by rising the sparkover level of the external series gap to a level that isolates the arrester from power-frequency overvoltages and from the worst case slow-front overvoltages due to switching and fault events expected on the line to which it is applied.

3.2 series varistor unit
SVU
non-linear metal-oxide resistor part, contained in a housing, which must be connected with an external series gap to construct the complete arrester

NOTE The series varistor unit may include several units.

3.3 section of an EGLA
complete, suitably assembled part of a complete EGLA necessary to represent the behaviour of a complete EGLA with respect to a particular test

3.4 section of an SVU
complete, suitably assembled part of an SVU unit necessary to represent the behaviour of an SVU with respect to a particular test