INTERNATIONAL ISO/IEC
STANDARD 8652

Third edition
2012-12-15

Information technology — Programming
languages — Ada

Technologies de l'information — Langages de programmation — Ada

Reference number
ISO/IEC 8652:2012(E)

©|SO/IEC 2012

ISO/IEC 8652:2012(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +4122749 01 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:2012(E)

Table of Contents

Table of Contents.........cooiiiiiii—————————————— i
0T =TV oY o PR Xi
e T LT T2 7T o xii
T €= 4 = - | 1
I TS T - 1
1A EXEENt... e —— 1
R S ¥ - 2
1.1.3 Conformity of an Implementation with the Standardcccccceiiiiiinnnnnnnnnn, 4
1.1.4 Method of Description and Syntax Notation..........ccccccoviiiiiiiinneccceennee, 5
1.1.5 Classification Of Errors ... s ssnns e 6

1.2 Normative References ... s 7
1.3 Terms and DefinitioNsccccciicriirriiirsr s 8
P2 =Y o= 1] 1= 3 = 4 9
7 0 4B T e = T 9
2.2 Lexical Elements, Separators, and Delimiterscccceevevieeeeeesseessessseceseesseeeeeeeeeens 1
2.3 Identifiers.... ..o nm e e e e e e nnnnannan 12
2.4 NUMETIC LiteralS........u it r s e s s s s s e e e e s e s s e e e e e mmm e s s e e e e nmmnnn 13
2.4.1 Decimal Literalsc.ocuuiieeiimmiiimiiiieeeieeie e s 13
2.4.2 Based Literalsceucimmmmiimmmmimeiieiiieeiieeeeeeeeeeeeeeenenn s 13

bR 3 04 o T T e =] gl I T - Y 14
2.6 String Literals.........cccviemmmmiiiii i 14
0 A 0o T4 11 .4 1T 41 P 15
28 I8 = T [1 - =N 15
2.9 ReSErved WOKAScccoeviiiiiiieeeiesesssssiesiniessessssessssssssssssssssssssssnssssssnsssnnssnnsenssnnnssnnnnnnnes 17
3 Declarations and TYPesS.....ccccciiiimrmriiiiiimiinirrrmss s s s rsmsssssssnmsssns 19
3.1 Declarations ... 19
B Y/ o T 3= T Lo IR ST U o] 4T =Y 20
3.2.1 Type Declarations.........ccccciiiiiiinmmmmnnii s 21
3.2.2 Subtype Declarations...........ccccvimmmmmriinii s ———————— 23
3.2.3 Classification of Operations............cueeeeeeeiimmiiimmmneeeneennennnnnnnnn . 24
3.2.4 Subtype Predicatesccuueemmemimemmmmemmemeeeeeeeeneeeiees e nnn s s nannnan 24

3.3 Objects and Named NUmMbers...........ccoimimiier e 26
3.3.1 Object Declarations..........cccuuimmmmmeennsssr s 28
3.3.2 Number Declarations ... 31

3.4 Derived Types and ClasSesccccciriiiiriiiirnissssssssssssss s s s isss s ss s s s s s s s s s s s s s s s s s sn s 31
3.4.1 Derivation ClasSSescuuueerremmmmmmmmmmmmmmemmnemmneennem s nnmn s s s nnnn s nsnnnsnnnsnnnssnsssnssssnssnnsen 34
3.5 SCalar TYPES ... cceeererr i 35
3.5.1 ENUMeEration TYPEeScocieeceiiiiiiiriieccecssss e s s s rmmsssss s s s e s s e s nmms s s s e e et e nmmn s s s ssenennnnnn 40
BT 04 0 T- 1 - o3 (=Y g 5 T = 41
BT B = T Yo = T T I8/ o - 42
3.5.4 INteger TYPES ..oiiiiiceeirir i 42
3.5.5 Operations of Discrete TYPesS......uumemmmemmmemmeeeeeeeeeeennennnnnnnnnnnnnnnnnsnnnsnsannnnsnnnnes 44
3.5.6 Real TYPeS..ciiiieeeciiiiirirrecc s ssss s s s s e rr s s s s s e e e e s sa s s s e r e e nnmnn s a s s e e rennnmnnssnnnsnnnsennnnn 45
3.5.7 Floating Point TYPeScoiiiiiiiimmmirrr s nsssssss s s 46
3.5.8 Operations of Floating Point Types........ccccccmmmiiiniininssinsses s 48
3.5.9 Fixed PoinNt TYPeS....cooc it r s e s s s s e s s s s s s s e e s e e nmmn e s e e e e e nnnnn 48
3.5.10 Operations of Fixed Point TYPEeSccuueerrmmmmmmmmmmmmmmmemmeenneennnennnnnsnnnnnnsnnnssnsssnnnnes 50

© ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:2012(E)

B N - 1 I o 1= 51
3.6.1 Index Constraints and Discrete Rangesccccoociiiriiirciiccnnccnsccnncccnccsenenenns 54
3.6.2 Operations of Array TYPEScccccccirciirssissnnes 55
B T B T T R I 1= 56

B A 0 T o T 110 F= L= 56
3.7.1 Discriminant Constraints..........ccccccvrmmmmiiinerrrr s 59
3.7.2 Operations of Discriminated TYpPes.........ccccciirriiriiirniissnssssssssss s sssssssssssnas 60

B IR B =T oo T o N I T 60
3.8.1 Variant Parts and Discrete ChoOiCes.........cccccioiiiiiri e 62

3.9 Tagged Types and Type EXtensions...........ccoieiecciiiiiiriscccscsss s s e e e 64
BCE TRe T V7 o T =T 0T £ 1= o 67
3.9.2 Dispatching Operations of Tagged Typescccccinriinnnmmmnrnnsssssssssee s 68
3.9.3 Abstract Types and Subprograms...........ccccccociiirrirrrirnrnssrrsrs e 71
3.9.4 INtrfacCe TYPES oo s 72

3.10 ACCESS TYPOS . cceiiuuiiiiirirrrrrmnnssssssrrrrrnmassssassserrrnnmassssasssrrrennnssssssssemnnnnnnnssssnsssernnnnnnnsnnn 75
3.10.1 Incomplete Type Declarationsccccccccirieriisss e 77
3.10.2 Operations Of ACCESS TYPESuuuiiii s 79

3.11 Declarative Partscoooeiiiiiiimiiieiiiiiieeeeeee e s 85
3.11.1 Completions of Declarations.............cccccciiriiirniinninsnsssss e 85

4 Names and EXPreSSiONSccocceeciiiimmceiirirrmassssrrsmassssrrsnssssssrsmnsssssssnnsssssssnnssssees 87

A NAMES ... e naeennneaa e nanaaananan 87
4.1.1 Indexed COMPONENES.......cccciiiiiiiirirrrrrrr e e e e e e e e e es 88
g = o = 89
4.1.3 Selected COMPONENTS.......ccccciiiiiriirrrrrrrrrrrr e rreeerreeees 89
L g I O 1] o 11 == 91
4.1.5 User-Defined References.........ccccvviccieemiinininnnnscssssnnse s ssssssssssss s ssssssnnnns 92
4.1.6 User-Defined INdeXingcccccoiiiiiiiniiciiicrsrcs s s 93

L 2 1 - 1 95

T B O X0 o | =T - 1 (= 96
4.3.1 Record AgQregatesccccieeceenciiiieirrnnmasssissierrernnmssssssssssresnnmssssssssserssnnnnssssssssens 96
4.3.2 Extension AgQregatescccccccccccceiiiimmmirmssiiiin e rr s s s s e e e s n s nnnnees 98
4.3.3 Array AgQregatesccccciieermrrriiinsssnnr s 929

T 0 4 o] === o o 1= 102

4.5 Operators and Expression Evaluation ... 103
4.5.1 Logical Operators and Short-circuit Control Forms..........ccooeevvvvviiiiiiiiceenee, 104
4.5.2 Relational Operators and Membership Testscccccorirriirirrrrrrrssssssssssrerneeens 105
4.5.3 Binary Adding Operators........cccccooiiismemmnssninnsssssss s sisssssssss s sssssnnnes 109
4.5.4 Unary Adding Operators.........cccc s s sin s se s s s s s s s s s s s sn s s 110
4.5.5 Multiplying OpPerators ... s 110
4.5.6 Highest Precedence Operators..........cccccemrriiinininisssnsss s sssssssssnnnns 112
4.5.7 Conditional EXPreSSIONS ..o s s 113
4.5.8 Quantified EXPreSSiONScccucccieriiiiimriiicsssressssssse s sssssss s ssssssssssssssssssscssnsassnas 114

4.6 TYPE CONVEISIONScoeeeeiieeiieecinnimnnnnnnnnnnnnnsnnsssnssnnsssnnssssssssssssssssssssssnnsssnssnssnnssnnnsnnnnnn 115

4.7 Qualified EXPreSSIiONS ... s s s ssnsssssssssssnnssnnsnnnnes 119

4.8 AllOCAtOrSooeeeeeececeeeeeeemmenm e nnnnnns 120

4.9 Static Expressions and Static SUbtypes ..., 122
4.9.1 Statically Matching Constraints and Subtypes ..., 125

5 Statements ... s 127

5.1 Simple and Compound Statements - Sequences of Statements.......................... 127

5.2 Assignment Statements...........cooooiriiiiiii e 128

5.3 If Statements. ... ————— 129

5.4 Case StatemeNnts.........coveieiiiiiiiieeieeeee s esere e e s s s s s e e e s s n——————. 130

© ISO/IEC 2012 — All rights reserved i

ISO/IEC 8652:2012(E)

5.5 LOOP Statements..... ..o 131
5.5.1 User-Defined Iterator TYPesccciiiiiiiiiiiiiimiiieecrescessees e eesessesssss e s sse s sssssssssssnees 133
5.5.2 Generalized Loop Iterationcceeeeieiiiiiiieeiieciiseseesees e eeee e s sessssnnes 134

E = Lo o3 Q3 =1 =T 1= 1 136

5.7 EXit Statementso 137

5.8 GOto Statements ... 137

6 SUDbPrograms..........ccccc 139

6.1 Subprogram Declarations..........cccccoiiiiinnemmnr e ———— 139
6.1.1 Preconditions and Postconditionscccooimmiiimiiiiiieiiieieesse s 142

6.2 Formal Parameter Modes..........ccciiiiiin s 144

6.3 Subprogram Bodiesccevieiiiiiiiiiiiii 145
6.3.1 Conformance RUIES.............ccevieiiiemieeeieeeereereeeereeereseseeeeessrssesssssssssssnsnnnssnnssnnnnnnns 146
6.3.2 Inline Expansion of Subprogramsccooiiimimiiiimiicmieesnres e 148

6.4 Subprogram Calls..........ccooeeiiiiiiiiiiic e ——— 148
6.4.1 Parameter ASSOCIAtioONS........cccviiiiiiiiniissiiss s 150

6.5 Return Statements.........covvieiiiiiiiirirsr e 153
6.5.1 Nonreturning Procedures............cccceeiiiiiiniiinsmnmnnssss s 155

6.6 Overloading of Operators ... ————— 156

6.7 NUIl Proceduresccooiiiiiiiiiiiiiiiiiiiiiinisiis s s s s s s s s s s s s s s s s s s e s as s s s snansnnes 157

6.8 EXPression FUNCLIONScccoiiiiiiiiiiirrsr s rss s sssssss s s ss e s enssnssssnnees 158

A - T3 - Ve =TSO 159

7.1 Package Specifications and Declarations...........cccceevviiiiiiiiiiiiiceeeeee, 159

2 2 e 1= T T=T0 = T Yo [T R 160

7.3 Private Types and Private EXtensions..........cccociiiimmimni e 161
7.3.1 Private Operations..........ooeeiioiimmmmmmmmmmmeemeeeeeeeeceeee e s 163
7.3.2 Type INVariantscooiieceiciii s rr s e s s e s m s s s s s e e e nnmmn s nnnennns 165

7.4 Deferred Constants ... 167

7.5 Limited TyPeS ... 168

7.6 Assignment and Finalization ... 170
7.6.1 Completion and Finalization..............cocouiiiiiiiiiiiiiciiiiceee e 172

8 Visibility Rules ... s 175

8.1 Declarative ReQIONoicciiiemmimiiiiiisrci s 175

8.2 Scope of Declarations ... 176

8.3 ViSIDIlity ...ceeeeeiiiiiciirr e 177
8.3.1 Overriding INdicatorsccoueiiieiiieeiieeiieeereeerceeiee s s s e e s s s s s e nnnnnnnnnns 179

L U Lo =N 0 F- T == 180

8.5 Renaming Declarations.........ccccceveiiiiiiiiieeiini s 181
8.5.1 Object Renaming Declarationsccccceeuimiiiiiiiieieiieciinieeceeeeee e eeeenees 182
8.5.2 Exception Renaming Declarationsccueeeecciiiin e e 183
8.5.3 Package Renaming Declarations............ccoocemmmmiiiiniininecinnn s 183
8.5.4 Subprogram Renaming Declarationscccccciiniiinnesinnncnnnseeseee s 184
8.5.5 Generic Renaming Declarationsccuuiiiiiiiiiiiiiieiieceieecneciieeeceeeeeeeeeeeeeeeseeees 186

8.6 The Context of Overload Resolution...........ccccoviiiiieeinnneeee e 186

9 Tasks and Synchronization............oooecciiiii e 189

9.1 Task Units and Task ObjJects.........cccccoviririinmmmmissrr s 189

9.2 Task Execution - Task Activation.........ccceevmiiiiiiiiiiisiisssre e 192

9.3 Task Dependence - Termination of Tasks..........ccvvveiiiiieeiieessessssseseseeseseeeeeeeeeeneeenes 193

9.4 Protected Units and Protected Objectsccccccniiiiiimimmmncern s 194

9.5 Intertask ComMmMUNICAtION.........ooiiiiiieiiee e ennes 197
9.5.1 Protected Subprograms and Protected Actions..........cccccceviiiiiiiiiiiniiceiceneennnns 199
9.5.2 Entries and Accept Statements...........ccovveiieiiiiiiiecireccees e ———— 200

iii © ISO/IEC 2012 — Al rights reserved

ISO/IEC 8652:2012(E)

9.5.3 ENtry Calls.......cuuiiiiiiiiiinirre s 203
9.5.4 Requeue Statements........ ... e 205
9.6 Delay Statements, Duration, and Time ... 207
9.6.1 Formatting, Time Zones, and other operations for Time........cccccccccuennnnnnes 209
9.7 Select Statements..........o s 215
9.7.1 SeleCtive ACCEPT ... s nnnan 215
9.7.2 TIMed ENtry CallS ... s s ssssnssnnssnnnes 217
9.7.3 Conditional Entry Calls........ccccciiiiiimmmmmiisssrr s s 218
9.7.4 Asynchronous Transfer of Control............ccocvvmimiicciii e 219
9.8 Abort of a Task - Abort of a Sequence of Statements.............ocomremmreennecnncee. 220
9.9 Task and Entry Attributes........cooieeccciiiirrrrr e s 221
9.10 Shared Vari@bles ... nnas 222
9.11 Example of Tasking and Synchronization...........ccccccciiimemmnne s 223
10 Program Structure and Compilation Issues.........ccccvveeeecciiiiiiiirnnreeencenn, 225
10.1 Separate Compilation..........ccooviiiiiiiiiiir i ————— 225
10.1.1 Compilation Units - Library UNitsccccceiiiiiiiiimmmmnsssnn e 225
10.1.2 Context Clauses - With Clausescooviiiiiiiiiiiiiii e 228
10.1.3 Subunits of Compilation Units..........ccocoriiiiiiiiiiiiiieic e 230
10.1.4 The Compilation ProCesscoiiiiiiiiiiiiiissssssssss s ses s s ss s s s s s ss s e s s s s s ss s s s s e ss s s nnsnnes 232
10.1.5 Pragmas and Program UNitScocciimmmmmiisn s sssssssnnens 233
10.1.6 Environment-Level Visibility RUIEScccceeiiiiiiiiienn s 234
10.2 Program EXeCULION..........coiiiiimiii i irrr s s e s e s emess s s e s s e s nn s s s s e e e e e mmn s s s e ennes 234
10.2.1 Elaboration Control...........ccccoiiiiiiiiniirr s 236
T ==Y o1 Lo o =P 241
11.1 Exception Declarations..........cco i 241
11.2 Exception Handlers ... ser s s s e s s s s ssm s s s e e e e e s 242
11.3 Raise Statements..........ccooiiiiiiiimi e ————— 243
11.4 Exception Handling ..o snnnes 243
11.4.1 The Package EXCepLionsccccoviiiiiiiinmmininnisssnn s ssssnnnes 244
11.4.2 Pragmas Assert and Assertion_PoliCyooeciiiimiiicccccrrrreeeeene e 246
11.4.3 Example of Exception Handling...........ccovverrieie e s e 248
IR T U T oY o] =YX [T B0 1= o1 249
11.6 Exceptions and Optimization ... 252
7 € 1= 4 =Y T 0T T 253
12.1 Generic Declarations............ccovemmiriiiirrrr s 253
A € T=Y T ool = Lo T |- 255
12.3 Generic Instantiation...........ccoo i ————— 256
12.4 FOrmal OBjJECLEScccooiiiiiiceicceeneererr e 258
12.5 FOrMal TYPES ..iieeeiieeecciiiiirrrrsmessss s s s e s s ssmass s s s s s e s e s nn s ss s s e e e e s nnmanssiansnsannnnmnnnssnsnsnnnns 259
12.5.1 Formal Private and Derived TYPeSccccceriiiniinmmmmnnnsnnsssinns s ccissssssnnnnes 261
12.5.2 Formal Scalar TYPEeSccccviummmrmriiniiisssnr s nsssssssss s ssssss s ssnnnes 263
12.5.3 FOrmal Array TYPeS....ciiiiieeciiiiiiririimnssssss s e s sssnmnsssss s s sesssnmnsssssssssnnnscnnsnsnnsnsennns 263
12.5.4 FOrmal ACCESS TYPES ..oreieemeeiiiiiirrrrrimnsssssssrrrrnnmssssssssserrsrnnsssssssssssnnnnnnnssnsssennes 264
12.5.5 Formal Interface TYPescccccmrriiiiiiiiiiseiirrr s nnees 265
12.6 Formal Subprogramscccccemmmiiir s 265
12.7 FOrmal PaCKagescciiiiiiiiicmeciiisiirrsscesssss s s s s e s snmss s s s s s e s enmnnssssssssessnnnnnsssnnssennes 267
12.8 Example of a Generic Packagecccvvviiiiiiiiiiiiisiissrrs s 269
13 Representation ISSUESccceiiiiieeiiiiircecrr s s s s s e s e enmn e rennn 273
13.1 Operational and Representation ASpPects.......ccccecciiiiiiiiirccccs e 273
13.1.1 Aspect Specificationscooviiiiiiii i —————— 276
7 o Ve =T IR 1N/ o =Pt 278

© ISO/IEC 2012 — All rights reserved iv

ISO/IEC 8652:2012(E)

13.3 Operational and Representation Attributes ..., 279
13.4 Enumeration Representation Clauses..........cccccccciirriicriinninncnnnssnnsssssssnnens 285
13.5 ReCOrd LaYOUL.......cooeeeeeiiiicirrricceesss s s e e s s s s s s s s e s n e s mmsss s s s s e e n e s mmm s s s s e e e e s mmmannssnnns 286
13.5.1 Record Representation ClaUuSesccuvvririrrrirrinssssssssssssss s s s s ssssssssssssssnees 286
13.5.2 Storage Place Attributes...........ccoiiimiiii 288
13.5.3 Bit Ordering.....cccccciiiiiiiiicicrrirrrr s 289
13.6 Change of Representation........... e 290
13.7 The Package SyStemccccciiiiiiiiiiinsmmmirn s 291
13.7.1 The Package System.Storage_Elementsccccceriiiiiiiiiiinnnnnnnccciinenns 293
13.7.2 The Package System.Address_To_Access_Conversions............cceeeeeeennnne 294
13.8 Machine Code INSertionscccciiiimeien e 294
13.9 Unchecked Type CONVEIrSIONS.......cccovemmmmriiiinisiisssrss s ssssssssssssss s sssssssss s s 295
13.9.1 Data Validityccccemiiiiiiiciieereiriissccsssrr s s s ssssns s s smmn s e e s s s s nnnns 296
13.9.2 The Valid Attribute...........cccommreiiiir s 297
13.10 Unchecked Access Value Creation...........cccocccieemmnnnnnsssssssnsss s 298
13.11 Storage Management ... ———— 298
13.11.1 Storage Allocation Attributes...........cccccmriiiiiiiiiiii e, 301
13.11.2 Unchecked Storage Deallocation...........ccccccvriiiiiiiiiiiiiiiiiirrrr e, 302
13.11.3 Default Storage POOIS ... 303
13.11.4 Storage SUbPOOIS........ccccmmimrir e —————— 304
13.11.5 Subpool Reclamation......... 306
13.11.6 Storage Subpool Example......... i 307
13.12 Pragma Restrictions and Pragma Profile...........ccccoooiciiccicccnnns 309
13.12.1 Language-Defined Restrictions and Profiles..........cccccviiiiimimnninccciiinnnns 310
13,13 SErEAMS......ce s 312
13.13.1 The Package Streamscccccccriiiiiiiiiiiiniirrrrrrssrsssssss s sss s s ss s s s s s s s s s s s e s e e e 312
13.13.2 Stream-Oriented Attributescccooiii e —— 313
13.14 Freezing RUIESooo e 318
The Standard Libraries..........ccccciiiiiiiniiin e 321
Annex A (normative) Predefined Language Environment............ccccciiiiiiiiiiinnnn, 323
A.1 The Package Standard............... e 326
A.2 The Package Adacccceceeiiiiiiiriricesssssisireescnsssss s s s s s s s nmasssssssssenesnnnsssssssseenesnnnnnns 330
A.3 Character Handlingcccceiiiiiiiimmminii s 330
A.3.1 The Packages Characters, Wide_Characters, and Wide_Wide_Characters 330
A.3.2 The Package Characters.Handling..........ccccccoiinnninnniccsic s 331
A.3.3 The Package Characters.Latin_1.........cccoi s ssnenns 333
A.3.4 The Package Characters.Conversionscccccerrrciinnnnnnisssssssssnnnnssssssssssnees 338
A.3.5 The Package Wide_Characters.Handlingcccccccoinviiniimmmmnnincisennnneen 340
A.3.6 The Package Wide_Wide_Characters.Handling...........ccccceeiicciiccccnnnnnns 342
N RRS3 4T0 Yo TH F= T o | 114V s 343
A.4.1 The Package Strings........cccccciiiriiiiimmmmmnnisssrrs s ssssnss e 343
A.4.2 The Package Strings.Mapscccoivmmmmmiiiiniininser s 343
A.4.3 Fixed-Length String Handling.........cccccooc e 346
A.4.4 Bounded-Length String Handlingccccoooiiiicicci s 354
A.4.5 Unbounded-Length String Handlingcccoommiiiinniiiee e 361
A.4.6 String-Handling Sets and Mappingsccccvimmmmme s 366
A.4.7 Wide_String Handling..........ee e 366
A.4.8 Wide_Wide_String Handling ... 368
A.4.9 String Hashingcccoimmmirrr s 37
A.4.10 String COMPAriSON......ccccueerrerriiiirrsn s annn s 372
A.4.11 String ENCOAINGeeeeee s 373
A.5 The NUMEriCS PaCKages........cccoiiiimiemmmuiiiisirrrsrcssssssss s s srssmasssssssssssesssmssssssssssesssnnnnns 378

v © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:2012(E)

A.5.1 Elementary FUNCLIONSccccmimiiiiiiiceire s s 378
A.5.2 Random Number Generation...........cccccciiriiiininissserrrs s ssnnees 381
A.5.3 Attributes of Floating Point TYypes ... 386
A.5.4 Attributes of Fixed Point Types........ccccccimmmiiinniiiinieinrre s 390
N R T o103 T T T U 390
A.7 External Files and File Objects........cccouiiiiiiiicircirrrrrrrrrrrrrrr e 390
A.8 Sequential and DireCt Filescccciiiiiiiiiieeeiiir s r s s e e s e s nnsas e eeees 391
A.8.1 The Generic Package Sequential_IO ... 392
A.8.2 File Management............ooccimmmimiiinnsssr s s annes 393
A.8.3 Sequential Input-Output Operations..........cccociiiiiiiiiiiiiiiii 395
A.8.4 The Generic Package Direct_lO ... 395
A.8.5 Direct Input-Output Operations..........cccovvriiiiiiirirrrrrr s 396
A.9 The Generic Package Storage_lOccccceiiiiiiiiiinemnnnsse s 397
A.10 Text INPUt-OUEPUL ... 397
A.10.1 The Package Text_lO....... s s s s s s 399
A.10.2 Text File Management ... s 403
A.10.3 Default Input, Qutput, and Error Files...........oooorriiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeees 404
A.10.4 Specification of Line and Page Lengths..........cccccciiiiiiiiiiiiiiiiiiiiiicccccccniennne, 405
A.10.5 Operations on Columns, Lines, and Pages...........cccceviiiriiiiiiiinsiinsnssssssssnnnnens 406
A.10.6 Get and Put Procedures............cc o coriiirirrrrrsssrsssssssssssssssssssssssss s s s s s ssssssssssnsnnnn s 409
A.10.7 Input-Output of Characters and Stringsccoccmmmmriiiniiininen e 410
A.10.8 Input-Output for Integer TYPesS.....ccccc i 412
A.10.9 Input-Output for Real TYPEeSccccciriiiririrrrrrrrr s s 414
A.10.10 Input-Output for Enumeration TYPes.......ccccrrrrrrrrrrrrrsssssssssssssssssssssssssssssssnnas 416
A.10.11 Input-Output for Bounded Stringscooomemiimiiiiiiiiieeieeeeeeeeee s 417
A.10.12 Input-Output for Unbounded Strings.......ccccoviiiiiiiiiiiiiinninirrirrrrrrn e 418
A.11 Wide Text Input-Output and Wide Wide Text Input-Output.........cccceeevviiiiieennnnn. 419
A.12 Stream INPUL-OULPUL ...t r e e e e e e e r e e e e e neees 420
A.12.1 The Package Streams.Stream_lO.........ccccccconniiiiiimmmmnnnssrnn e nneees 420
A.12.2 The Package Text_IO.Text_Streams.........cccccurriiiiriiiiiiiiniiininsrirr e 422
A.12.3 The Package Wide_Text_10.Text_Streamscccceerrrirrrirrisnssssssssssssssssssnenns 423
A.12.4 The Package Wide_Wide_Text_IO.Text_Streams.........ccccceeeerrrrrrrrnssnnssnnnnnns 423
A.13 Exceptions in INput-Output....... ... 423
A4 File ShAriNg ... s e s s e e e e e s e s e e s s e e s e e e e e e e e e e e e e e e e e e e 425
A.15 The Package Command_LiNe........cccccciiiirririnininnisnsssssnsccscsssssssssssssssssssssssssssnssnn s 425
A.16 The Package DireCtoriescccccuuiiiiimmmmrrriinnsssrnr s 426
A.16.1 The Package Directories.Hierarchical_File_Namescccccccrnrrrrinrrnnnnnnn. 433
A.17 The Package Environment_Variablesccomieccciiniiimmeccccss e 435
A.18 CONLAINETS ...t e annnn e 438
A.18.1 The Package Containers.........ccccuiiiirummmmmmriinnnssssssss s sssss s sssssnnnes 438
A.18.2 The Generic Package Containers.Vectorscccceriiiniinnniinnninssssssnennns 438
A.18.3 The Generic Package Containers.Doubly_Linked_Lists.............cceeeviiinnnnn. 454
N 0 1 = T L 465
A.18.5 The Generic Package Containers.Hashed_Mapscccccoeerieririnnccnnnicnncnnnnns 471
A.18.6 The Generic Package Containers.Ordered_Mapsccoovvmmiiiiiiiiiiecinnccinnnns 475
N TR T 479
A.18.8 The Generic Package Containers.Hashed_Sets.........cccccoeiiiiiiiiiiiccciccccccnnnns 486
A.18.9 The Generic Package Containers.Ordered_Sets.............cccovvmmmmrriiinniiiiinnenns 491
A.18.10 The Generic Package Containers.Multiway_Trees............ccceemrrrrrriniiiiinnns 496
A.18.11 The Generic Package Containers.Indefinite_Vectorsccccceerccunnnnee. 510
A.18.12 The Generic Package Containers.Indefinite_Doubly_Linked_Lists.......... 510
A.18.13 The Generic Package Containers.Indefinite_Hashed_Maps 511
A.18.14 The Generic Package Containers.Indefinite_Ordered_Maps..................... 511
A.18.15 The Generic Package Containers.Indefinite_Hashed_Sets....................... 511

© ISO/IEC 2012 — All rights reserved Vi

ISO/IEC 8652:2012(E)

A.18.16 The Generic Package Containers.Indefinite_Ordered_Sets 512
A.18.17 The Generic Package Containers.Indefinite_Multiway_Trees................... 512
A.18.18 The Generic Package Containers.Indefinite_Holders...........ccccccccnrnnnnnneee 512
A.18.19 The Generic Package Containers.Bounded_Vectors.............ccevvumrrrnrrnne 516
A.18.20 The Generic Package Containers.Bounded_Doubly Linked_Lists......... 516
A.18.21 The Generic Package Containers.Bounded_Hashed_Maps...................... 518
A.18.22 The Generic Package Containers.Bounded_Ordered_Mapsccccccee..... 519
A.18.23 The Generic Package Containers.Bounded_Hashed_Sets....................... 520
A.18.24 The Generic Package Containers.Bounded_Ordered_Sets............cccseevnn. 521
A.18.25 The Generic Package Containers.Bounded_Multiway_Trees................... 522
A.18.26 Array SOrtingccccccccciinnnnnsssss s ssssssssssssssssssssssssssnnnns 524
A.18.27 The Generic Package Containers.Synchronized_Queue_Interfaces 525
A.18.28 The Generic Package Containers.Unbounded_Synchronized_Queues .. 526
A.18.29 The Generic Package Containers.Bounded_Synchronized_Queues....... 527
A.18.30 The Generic Package Containers.Unbounded_Priority_Queues............. 527
A.18.31 The Generic Package Containers.Bounded_Priority_Queues.................. 529
A.18.32 Example of ContaiNer USEe ... 530
A.19 The Package LOCales............oiiiiiiieccccririirrrrccesss s s s s s s s s s e e e s rmmn s s s e e e e e nmmnns 532
Annex B (normative) Interface to Other Languages.............ccciiiiiiiiiiiiiniiiininnn, 533
B.1 Interfacing ASPECES......ccccccciiiciircricrr s 533
B.2 The Package Interfacescccccoiiiiiiimimmnissrrn e 536
B.3 Interfacing with C and CH+ ..o 537
B.3.1 The Package Interfaces.C.Stringsccccciiiiiiiiiiiiii e 543
B.3.2 The Generic Package Interfaces.C.Pointers...........cccceeviiiiiiiiiiiicniiesncssssennneen 546
B.3.3 Unchecked UnNion TYPESccceiiiiiiiiinmmmmmneinnssssssssss s sssssssssssss s s s ssssnnes 548
B.4 Interfacing With COBOL..........cciiiiiiiiirrr s 550
B.5 Interfacing with Fortran............. 556
Annex C (normative) Systems Programmingcccceeiiiiisssssnnnnnnn 559
C.1 Access to Machine Operations.........cccccoceeiiiiiiici s 559
C.2 Required Representation SUPPOIt..........ccooviiiiiii i 560
C.3 INterrupt SUPPOIL.... .o 560
C.3.1 Protected Procedure Handlerscccccommmmiiinnincsseerns s 562
C.3.2 The Package INterruptsooeveeeieeeimeimmeieineiieeresesesseesssssssssssssssssssssnssssnssnnsnnnns 564
C.4 Preelaboration Requirementsccccevieeiiieiicciissc s ssssssessesssssesesessses s e s s s eess e e seseenes 566
C.5 Pragma Discard_Namesccccceriiiiiiiiiinmmins s nnsssssss s sssssssss s 566
C.6 Shared Variable CoNtrol ... 567
C.7 Task INfOrmation ... 569
C.7.1 The Package Task_ldentificationccccceevvmimmmiricriiisiiiniee e eeeeeees 569
C.7.2 The Package Task_Attributes............ooooiriiiiiiiiiiiiiiiee e 571
C.7.3 The Package Task_Terminationcccooemmmmmiiiiniinnsccnimnecs s e 573
Annex D (normative) Real-Time Systemsooceeeiciiiiiiimmnncs s 575
D.1 Task Priorities ... s 575
D.2 Priority SChedulingcccovmimimiiirirs s 577
D.2.1 The Task Dispatching Modelcccoommimiiiiiiniiiii e, 577
D.2.2 Task Dispatching Pragmasccccomiiieemiciiiiimnssccsscsss s esssscssssse s ee s e sncmnnssnns 578
D.2.3 Preemptive DispatChingccceeucciiiiiiiiiccccci e r s e s 580
D.2.4 Non-Preemptive DispatChing........ccccuviiiiiiiiiiiiiirirrr e e e e 580
D.2.5 Round Robin DispatChing........cccccoiciimmimmnssre s 582
D.2.6 Earliest Deadline First Dispatching........c..cccooiimmmmiccciinrrrrccce e 583
(D IR o Lo 4 1 VK O2=Y1 FT T [IoY o7 (] 4V 585
D.4 Entry QuUeuing POlICIescccviiiiiiiiiieiirnr s 587
D.5 DYyNamicC Prioriti€S.........cciiimmmmmeriiiinissse s 588

vii © ISO/IEC 2012 — Al rights reserved

ISO/IEC 8652:2012(E)

D.5.1 Dynamic Priorities for Tasksccccucriiimmmmmiiiieer e 588
D.5.2 Dynamic Priorities for Protected Objects.........ccccceerriiiiiiiiiiiie e, 589

(D ST o == 0T o €Y7= J07 2N o Lo o O 590
D.7 Tasking ReStriCtions..........coociiimmmmmrierrr e 591
D 2R 3817 Lo g o3 o o TR0 I o o - 593
D.9 Delay ACCUIACY ..ccicecueeriiiiiiriiimenssssssesrernnmassssssssersrsnmsssssssssemmssnnmssssssssssenmnnnnsssssssssnnns 596
D.10 Synchronous Task CONtrol..........ccccevieiiiiiiiiiiccirrrr e 597
D.10.1 Synchronous Barrierscccceeiiiiiniiissmmnsssssss s ssssnsnes 598
D.11 Asynchronous Task Control..........ccccccciimimmirr e 599
D.12 Other Optimizations and Determinism Rules.........ccccooiiiiiiiiiiiiiinniicnncccrer e, 600
D.13 The Ravenscar Profile ... 601
D B0y I =Y o U o Ty T o = 602
D.14.1 Execution Time TIimMersccooiiiiiiiiiiiiiiee e e e e s e e e e e e e e s e e e s s e e s e e e e e s eennennes 604
D.14.2 Group Execution Time Budgetscccccvriiiiiiiiiiiiiiiicccscssressseeeseee e eeeeeeeeeeenes 606
D.14.3 Execution Time of Interrupt Handlers..........ccoooveereeeeeeee e 608
D.15 TiMing EVENLSccomiiiiiiiiiciiiirr s 608
D.16 Multiprocessor Implementation.............ccooiiiiiii 610
D.16.1 Multiprocessor Dispatching Domainsccucecciiiiiimriccccccss e 611
Annex E (normative) Distributed Systems..........ccccceviiiiiiiiiieeeee 615
Bt O = T o T 615
E.2 Categorization of Library UNits..........cccccoivmmimmmiiisnrss s sssssnnnes 617
E.2.1 Shared Passive Library Unitsccccoiiimmmmicieern s 617
E.2.2 Remote Types Library UNitsoooo i e e s e s 618
E.2.3 Remote Call Interface Library Unitscocoeviiiiiiieees e veseessee e e 619
E.3 Consistency of a Distributed System...........cccciiiiiiiiiiii 620
E.4 Remote Subprogram Callscccceeiiiiiiiinniiiisrre s 621
E.4.1 Asynchronous Remote Callscccooriiiiiiiiiiiiiii s 623
E.4.2 Example of Use of a Remote Access-to-Class-Wide Type.......ccccceeereerreeeennn. 623
E.5 Partition Communication Subsystemc.cccooniiiii 625
Annex F (normative) Information Systems.........ccccccoiiiiiimmirccccccr e 629
F.1 Machine_Radix Attribute Definition Clause............ccoooeiiiiiiiiiiiiiniree e 629
F.2 The Package Decimal.........ccooiiiii s 629
F.3 Edited Output for Decimal TYpes.........ccorvmmmmmmmimnnisisirre s annes 630
F.3.1 Picture String Formationcoeeeiiiiiieiiie s eesee e r s e se s s s e e e eenn e s nnnnnes 632
F.3.2 Edited Output Generation ... ennennes 635
F.3.3 The Package Text_IO.Editing.......cccccccciimmmmmmiiiiiiccserire i 638
F.3.4 The Package Wide_Text_IO.Editingccccciiiniiimmmmmnincsesrnn s snssssneens 641
F.3.5 The Package Wide_Wide_Text_IO.Editing........ccevvrrmrrmmmrmricmiimmcirrrereeeeseeeeeeeennns 642
Annex G (normative) NUMEFICScccvviiiiiiiiiiiiiiiieissess s ss s s ssssss s s s sssss s s sss s ssssssssssssnnns 643
G.1 CompleX ArithmetiC.........ooooiiiiiiiieieee e en e nne e e e e nnnnnmnnnnes 643
(€70 I T 02015 1T o1 1=3 G 13 o 1= 3 643
G.1.2 Complex Elementary FUNCLIONS..........cueee e 647
G.1.3 CompleXx INPUt-OULPUL............ e 651
G.1.4 The Package Wide_Text_10.Complex_lO...... s 653
G.1.5 The Package Wide_Wide_Text_I0.Complex_lOuemmmmmmmmmnnnnnnnnnnnnniannnes 653
G.2 Numeric Performance Requirements.............couviviiiiiiiieeeeeeesssssssssssssssssssssesssssssscnnes 653
G.2.1 Model of Floating Point Arithmeticccocoiiimimiicc 654
G.2.2 Model-Oriented Attributes of Floating Point Types.........ccccccrriiiniiiiinnnnnnnnnn, 655
G.2.3 Model of Fixed Point Arithmetic.......ccccccciiiiiiiiiii e 656
G.2.4 Accuracy Requirements for the Elementary Functions..........cccccceeceiiccinnneee. 658
G.2.5 Performance Requirements for Random Number Generation...................... 659
G.2.6 Accuracy Requirements for Complex Arithmetic.........cccoooiiiiiiiiiiiiieeee 660

© ISO/IEC 2012 — All rights reserved viii

ISO/IEC 8652:2012(E)

G.3 Vector and Matrix Manipulation.............coooooiiiiiiiiiiiieeeeee e 662
G.3.1 Real Vectors and MatriCesccccceriiiiiiiiieemnnniiisssssnrn s sss s 662
G.3.2 Complex Vectors and MatriCesccuvveimmeiieemmmmmimemesssessssessssssesssssssesssssssennne 667

Annex H (normative) High Integrity Systems............coiiiiiiiriccccce e, 677

H.1 Pragma Normalize_Scalarsc.cccccciiimmmmmriisssrnn s ssssssse e 677

H.2 Documentation of Implementation DeciSionscccooiiiiiriiiiiirr s 678

H.3 Reviewable Object Code ... s 678
H.3.1 Pragma Reviewableo s s e r s s 678
H.3.2 Pragma Inspection_Point.........ccccoriiriiciiccrrrrrcrrrrrrrrsssrsrrs s es s s e s s e s s e 679

H.4 High Integrity Restrictionsccccoiiiimmmmmice e 680

H.5 Pragma Detect_BIOCKING.......coooeemciiiiiiirrceccccr s s e e e 682

H.6 Pragma Partition_Elaboration_PoliCy ... e 682

Annex J (normative) Obsolescent Features ..., 685

J.1 Renamings of Library Unitsccccoiiiiiiiiiemiisssenn s 685

J.2 Allowed Replacements of Charactersoooooiiiiiiiiiiiiiiicsieseseeee e 685

J.3 Reduced Accuracy SUDBtYPEScouiiiiiiiiiiiiiiiiics e ene 686

J.4 The Constrained Attribute............cccciiiiiniiiin . 686

B N1 0 | 687

8304 T= T o =y 687

R A N 0 - T E-] =N 687
J.7. 1 Interrupt ENtries.. ..o s 688

0 1 T 03 =TT T - 689

J.9 The Storage_Size Attribute. ..o 689

J.10 Specific Suppression of Checks ...t 689

J.11 The Class Attribute of Untagged Incomplete Types......cccccvriiiiiiiieereeevceeeeeeneennns 690

J.12 Pragma INterface.........ccccviiiiiimmmiinniiinscsssr s 690

J.13 Dependence Restriction ldentifiers. ... 690

J.14 Character and Wide_Character Conversion Functionsccccccceeviiiiiiviiniinnnnns 691

J.15 Aspect-related Pragmas...........ccceviimmmiiiiinimmmiscmsssssssssessssssssssssssesssssmssssssssssssssnnnnns 691
J.15.1 Pragma INliNe ..o 691
J.15.2 Pragma NO_RetuUrN ... 692
J.A5.3 Pragma PacK ...t e s s s e s e s s s s n e e nmnn e s e e nnnnnnn 692
J.15.4 Pragma Storage_Size.......ccccccccmmmnmmnniin s sssssssssssnssssssssssnsssnnnes 692
J.15.5 Interfacing Pragmas.........cccccviiiiimmmmmmnssssrns s s 692
J.15.6 Pragma Unchecked_Unioncccccummmiiiiiiiciciiinnnnsssses s 693
J.15.7 Pragmas Interrupt_Handler and Attach_Handlerc....cccoovrrrrrrmnceiiiiinnneees 694
J.15.8 Shared Variable Pragmasccccccccvssssssssssssssssssssssssssnnes 694
J.15.9 Pragma CPU.......coiiiieeiirrs s s s 695
J.15.10 Pragma Dispatching_Domain.........cccccoiiiiimmminninnnccciinnnnes s 695
J.15.11 Pragmas Priority and Interrupt_Priorityccoeeeienii e, 696
J.15.12 Pragma Relative_Deadline.............cccoomrmieemeciiiiiiimrrrccecsen e er e s scmssssss s e eeeneana 696
J.15.13 Pragma ASYNCRIONOUScccciiimmmmmmiiiiinssssn s s s s ssssssn e 697

Annex K (informative) Language-Defined Aspects and Attributes 699
K.1 Language-Defined ASPecCtS..........cceciiimmmmmmiiinniisrnr s 699
K.2 Language-Defined Attributes..........cccooiirinirinicrcrrrcrrr e 702

Annex L (informative) Language-Defined Pragmas.............ccccciiiiiiiiiininniinnnnn, 717

Annex M (informative) Summary of Documentation Requirements................... 719

M.1 Specific Documentation Requirements...........cccccciiciiinnnnnsnnssnsnssssssssssssssssssssssssnnns 719

M.2 Implementation-Defined Characteristics...........ccccieeiirrriicrinssinc s 721

M.3 Implementation AdVICe s 726

ix © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:2012(E)

Annex N (informative) GlOSSarycccuuiiiiiiieiiimiimmsssssrsss s 735
Annex P (informative) Syntax Summaryccccccvvimiiiimiiiiiiiisssnsssseeeee e 741
Annex Q (informative) Language-Defined Entities.........cccccevviviiiiiiiiiiniiiiccncceen, 769
Q.1 Language-Defined Packages.........ccccooiiiiiimmmmmninnnnnssssssnss s ssssssnnnes 769
Q.2 Language-Defined Types and Subtypes.........ccccooiiiiinmmmmiiierne s 771
Q.3 Language-Defined Subprograms............cccovmmmmmmiiinniiinssnnsssns e 776
Q.4 Language-Defined EXCePLiONScccooviiiiiimmmmriiiniscssesn s 785
Q.5 Language-Defined ODbjJECLSccccvreerrrrierricrressee s e e s e e s sr s sse e s ssn e s nsnennnns 786
INA@X .. 791

© ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:2012(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part
2.

The main task of the joint technical committee is to prepare International Standards. Draft
International Standards adopted by the joint technical committee are circulated to national bodies for
voting. Publication as an International Standard requires approval by at least 75 % of the national
bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 8652 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information Technology Subcommittee SC22, Programming languages, their environments and
system software interfaces.

This third edition cancels and replaces the second edition (ISO/IEC 8652:1995), which has been
technically revised. It also incorporates the Technical Corrigendum ISO/IEC 8652:1995:COR.1:2001
and Amendment ISO/IEC 8652:1995:AMD 1:2007.

Xi © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:2012(E)

Introduction

Design Goals

Ada was originally designed with three overriding concerns: program reliability and maintenance,
programming as a human activity, and efficiency. The 1995 revision to the language was designed to
provide greater flexibility and extensibility, additional control over storage management and
synchronization, and standardized packages oriented toward supporting important application areas,
while at the same time retaining the original emphasis on reliability, maintainability, and efficiency.
This third edition provides further flexibility and adds more standardized packages within the
framework provided by the 1995 revision.

The need for languages that promote reliability and simplify maintenance is well established. Hence
emphasis was placed on program readability over ease of writing. For example, the rules of the
language require that program variables be explicitly declared and that their type be specified. Since
the type of a variable is invariant, compilers can ensure that operations on variables are compatible
with the properties intended for objects of the type. Furthermore, error-prone notations have been
avoided, and the syntax of the language avoids the use of encoded forms in favor of more English-like
constructs. Finally, the language offers support for separate compilation of program units in a way
that facilitates program development and maintenance, and which provides the same degree of
checking between units as within a unit.

Concern for the human programmer was also stressed during the design. Above all, an attempt was
made to keep to a relatively small number of underlying concepts integrated in a consistent and
systematic way while continuing to avoid the pitfalls of excessive involution. The design especially
aims to provide language constructs that correspond intuitively to the normal expectations of users.

Like many other human activities, the development of programs is becoming ever more decentralized
and distributed. Consequently, the ability to assemble a program from independently produced
software components continues to be a central idea in the design. The concepts of packages, of private
types, and of generic units are directly related to this idea, which has ramifications in many other
aspects of the language. An allied concern is the maintenance of programs to match changing
requirements; type extension and the hierarchical library enable a program to be modified while
minimizing disturbance to existing tested and trusted components.

No language can avoid the problem of efficiency. Languages that require over-elaborate compilers, or
that lead to the inefficient use of storage or execution time, force these inefficiencies on all machines
and on all programs. Every construct of the language was examined in the light of present
implementation techniques. Any proposed construct whose implementation was unclear or that
required excessive machine resources was rejected.

Language Summary

An Ada program is composed of one or more program units. Program units may be subprograms
(which define executable algorithms), packages (which define collections of entities), task units
(which define concurrent computations), protected units (which define operations for the coordinated
sharing of data between tasks), or generic units (which define parameterized forms of packages and
subprograms). Each program unit normally consists of two parts: a specification, containing the
information that must be visible to other units, and a body, containing the implementation details,
which need not be visible to other units. Most program units can be compiled separately.

This distinction of the specification and body, and the ability to compile units separately, allows a
program to be designed, written, and tested as a set of largely independent software components.

An Ada program will normally make use of a library of program units of general utility. The language
provides means whereby individual organizations can construct their own libraries. All libraries are
structured in a hierarchical manner; this enables the logical decomposition of a subsystem into

© ISO/IEC 2012 — All rights reserved Xii

ISO/IEC 8652:2012(E)

individual components. The text of a separately compiled program unit must name the library units it
requires.

Program Units

A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it
may read data, update variables, or produce some output. It may have parameters, to provide a
controlled means of passing information between the procedure and the point of call. A function is the
means of invoking the computation of a value. It is similar to a procedure, but in addition will return a
result.

A package is the basic unit for defining a collection of logically related entities. For example, a
package can be used to define a set of type declarations and associated operations. Portions of a
package can be hidden from the user, thus allowing access only to the logical properties expressed by
the package specification.

Subprogram and package units may be compiled separately and arranged in hierarchies of parent and
child units giving fine control over visibility of the logical properties and their detailed
implementation.

A task unit is the basic unit for defining a task whose sequence of actions may be executed
concurrently with those of other tasks. Such tasks may be implemented on multicomputers,
multiprocessors, or with interleaved execution on a single processor. A task unit may define either a
single executing task or a task type permitting the creation of any number of similar tasks.

A protected unit is the basic unit for defining protected operations for the coordinated use of data
shared between tasks. Simple mutual exclusion is provided automatically, and more elaborate sharing
protocols can be defined. A protected operation can either be a subprogram or an entry. A protected
entry specifies a Boolean expression (an entry barrier) that must be True before the body of the entry
is executed. A protected unit may define a single protected object or a protected type permitting the
creation of several similar objects.

Declarations and Statements

The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of
the program unit.

The declarative part associates names with declared entities. For example, a name may denote a type,
a constant, a variable, or an exception. A declarative part also introduces the names and parameters of
other nested subprograms, packages, task units, protected units, and generic units to be used in the
program unit.

The sequence of statements describes a sequence of actions that are to be performed. The statements
are executed in succession (unless a transfer of control causes execution to continue from another
place).

An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any actual parameters provided at the call with the corresponding formal
parameters.

Case statements and if statements allow the selection of an enclosed sequence of statements based on
the value of an expression or on the value of a condition.

The loop statement provides the basic iterative mechanism in the language. A loop statement specifies
that a sequence of statements is to be executed repeatedly as directed by an iteration scheme, or until
an exit statement is encountered.

A block statement comprises a sequence of statements preceded by the declaration of local entities
used by the statements.

Xiii © ISO/IEC 2012 — Al rights reserved

ISO/IEC 8652:2012(E)

Certain statements are associated with concurrent execution. A delay statement delays the execution
of a task for a specified duration or until a specified time. An entry call statement is written as a
procedure call statement; it requests an operation on a task or on a protected object, blocking the
caller until the operation can be performed. A called task may accept an entry call by executing a
corresponding accept statement, which specifies the actions then to be performed as part of the
rendezvous with the calling task. An entry call on a protected object is processed when the
corresponding entry barrier evaluates to true, whereupon the body of the entry is executed. The
requeue statement permits the provision of a service as a number of related activities with preference
control. One form of the select statement allows a selective wait for one of several alternative
rendezvous. Other forms of the select statement allow conditional or timed entry calls and the
asynchronous transfer of control in response to some triggering event.

Execution of a program unit may encounter error situations in which normal program execution
cannot continue. For example, an arithmetic computation may exceed the maximum allowed value of
a number, or an attempt may be made to access an array component by using an incorrect index value.
To deal with such error situations, the statements of a program unit can be textually followed by
exception handlers that specify the actions to be taken when the error situation arises. Exceptions can
be raised explicitly by a raise statement.

Data Types

Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main classes of types are elementary types (comprising enumeration, numeric, and
access types) and composite types (including array and record types).

An enumeration type defines an ordered set of distinct enumeration literals, for example a list of states
or an alphabet of characters. The enumeration types Boolean, Character, Wide Character, and
Wide Wide Character are predefined.

Numeric types provide a means of performing exact or approximate numerical computations. Exact
computations use integer types, which denote sets of consecutive integers. Approximate computations
use either fixed point types, with absolute bounds on the error, or floating point types, with relative
bounds on the error. The numeric types Integer, Float, and Duration are predefined.

Composite types allow definitions of structured objects with related components. The composite types
in the language include arrays and records. An array is an object with indexed components of the
same type. A record is an object with named components of possibly different types. Task and
protected types are also forms of composite types. The array types String, Wide String, and
Wide Wide_String are predefined.

Record, task, and protected types may have special components called discriminants which
parameterize the type. Variant record structures that depend on the values of discriminants can be
defined within a record type.

Access types allow the construction of linked data structures. A value of an access type represents a
reference to an object declared as aliased or to an object created by the evaluation of an allocator.
Several variables of an access type may designate the same object, and components of one object may
designate the same or other objects. Both the elements in such linked data structures and their relation
to other elements can be altered during program execution. Access types also permit references to
subprograms to be stored, passed as parameters, and ultimately dereferenced as part of an indirect call.

Private types permit restricted views of a type. A private type can be defined in a package so that only
the logically necessary properties are made visible to the users of the type. The full structural details
that are externally irrelevant are then only available within the package and any child units.

From any type a new type may be defined by derivation. A type, together with its derivatives (both
direct and indirect) form a derivation class. Class-wide operations may be defined that accept as a
parameter an operand of any type in a derivation class. For record and private types, the derivatives

© ISO/IEC 2012 — All rights reserved Xiv

ISO/IEC 8652:2012(E)

may be extensions of the parent type. Types that support these object-oriented capabilities of class-
wide operations and type extension must be tagged, so that the specific type of an operand within a
derivation class can be identified at run time. When an operation of a tagged type is applied to an
operand whose specific type is not known until run time, implicit dispatching is performed based on
the tag of the operand.

Interface types provide abstract models from which other interfaces and types may be composed and
derived. This provides a reliable form of multiple inheritance. Interface types may also be
implemented by task types and protected types thereby enabling concurrent programming and
inheritance to be merged.

The concept of a type is further refined by the concept of a subtype, whereby a user can constrain the
set of allowed values of a type. Subtypes can be used to define subranges of scalar types, arrays with a
limited set of index values, and records and private types with particular discriminant values.

Other Facilities

Aspect clauses can be used to specify the mapping between types and features of an underlying
machine. For example, the user can specify that objects of a given type must be represented with a
given number of bits, or that the components of a record are to be represented using a given storage
layout. Other features allow the controlled use of low level, nonportable, or implementation-
dependent aspects, including the direct insertion of machine code.

The predefined environment of the language provides for input-output and other capabilities by means
of standard library packages. Input-output is supported for values of user-defined as well as of
predefined types. Standard means of representing values in display form are also provided.

The predefined standard library packages provide facilities such as string manipulation, containers of
various kinds (vectors, lists, maps, etc.), mathematical functions, random number generation, and
access to the execution environment.

The specialized annexes define further predefined library packages and facilities with emphasis on
areas such as real-time scheduling, interrupt handling, distributed systems, numerical computation,
and high-integrity systems.

Finally, the language provides a powerful means of parameterization of program units, called generic
program units. The generic parameters can be types and subprograms (as well as objects and
packages) and so allow general algorithms and data structures to be defined that are applicable to all
types of a given class.

Language Changes

This International Standard replaces the second edition of 1995. It modifies the previous edition by
making changes and additions that improve the capability of the language and the reliability of
programs written in the language. This edition incorporates the changes from Amendment 1 (ISO/IEC
8652:1995:AMD 1:2007), which were designed to improve the portability of programs, interfacing to
other languages, and both the object-oriented and real-time capabilities.

Significant changes originating in Amendment 1 are incorporated:

e Support for program text is extended to cover the entire ISO/IEC 10646:2003 repertoire.
Execution support now includes the 32-bit character set. See subclauses 2.1, 3.5.2, 3.6.3, A.1,
A.3,and A 4.

e The object-oriented model has been improved by the addition of an interface facility which
provides multiple inheritance and additional flexibility for type extensions. See subclauses
3.4, 3.9, and 7.3. An alternative notation for calling operations more akin to that used in other
languages has also been added. See subclause 4.1.3.

e Access types have been further extended to unify properties such as the ability to access
constants and to exclude null values. See clause 3.10. Anonymous access types are now

XV © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:2012(E)

permitted more freely and anonymous access-to-subprogram types are introduced. See
subclauses 3.3, 3.6, 3.10, and 8.5.1.

The control of structure and visibility has been enhanced to permit mutually dependent
references between units and finer control over access from the private part of a package. See
subclauses 3.10.1 and 10.1.2. In addition, limited types have been made more useful by the
provision of aggregates, constants, and constructor functions. See subclauses 4.3, 6.5, and 7.5.

The predefined environment has been extended to include additional time and calendar
operations, improved string handling, a comprehensive container library, file and directory
management, and access to environment variables. See subclauses 9.6.1, A.4, A.16, A.17, and
A.18.

Two of the Specialized Needs Annexes have been considerably enhanced:

e The Real-Time Systems Annex now includes the Ravenscar profile for high-integrity
systems, further dispatching policies such as Round Robin and Earliest Deadline First,
support for timing events, and support for control of CPU time utilization. See subclauses
D.2,D.13,D.14, and D.15.

o The Numerics Annex now includes support for real and complex vectors and matrices as
previously defined in ISO/IEC 13813:1997 plus further basic operations for linear
algebra. See subclause G.3.

The overall reliability of the language has been enhanced by a number of improvements.
These include new syntax which detects accidental overloading, as well as pragmas for
making assertions and giving better control over the suppression of checks. See subclauses
6.1,11.4.2,and 11.5.

In addition, this third edition makes enhancements to address two important issues, namely, the
particular problems of multiprocessor architectures, and the need to further increase the capabilities
regarding assertions for correctness. It also makes additional changes and additions that improve the
capability of the language and the reliability of programs written in the language.

The following significant changes with respect to the 1995 edition as amended by Amendment 1 are
incorporated:

New syntax (the aspect specification) is introduced to enable properties to be specified for
various entities in a more structured manner than through pragmas. See subclause 13.1.1.

The concept of assertions introduced in the 2005 edition is extended with the ability to
specify preconditions and postconditions for subprograms, and invariants for private types.
The concept of constraints in defining subtypes is supplemented with subtype predicates that
enable subsets to be specified other than as simple ranges. These properties are all indicated
using aspect specifications. See subclauses 3.2.4, 6.1.1, and 7.3.2.

New forms of expressions are introduced. These are if expressions, case expressions,
quantified expressions, and expression functions. As well as being useful for programming in
general by avoiding the introduction of unnecessary assignments, they are especially valuable
in conditions and invariants since they avoid the need to introduce auxiliary functions. See
subclauses 4.5.7, 4.5.8, and 6.8. Membership tests are also made more flexible. See
subclauses 4.4 and 4.5.2.

A number of changes are made to subprogram parameters. Functions may now have
parameters of all modes. In order to mitigate consequent (and indeed existing) problems of
inadvertent order dependence, rules are introduced to reduce aliasing. A parameter may now
be explicitly marked as aliased and the type of a parameter may be incomplete in certain
circumstances. See subclauses 3.10.1, 6.1, and 6.4.1.

The use of access types is now more flexible. The rules for accessibility and certain
conversions are improved. See subclauses 3.10.2, 4.5.2, 4.6, and 8.6. Furthermore, better
control of storage pools is provided. See subclause 13.11.4.

© ISO/IEC 2012 — All rights reserved

Xvi

ISO/IEC 8652:2012(E)

e The Real-Time Systems Annex now includes facilities for defining domains of processors and
assigning tasks to them. Improvements are made to scheduling and budgeting facilities. See
subclauses D.10.1, D.14, and D.16.

e A number of important improvements are made to the standard library. These include
packages for conversions between strings and UTF encodings, and classification functions for
wide and wide wide characters. Internationalization is catered for by a package giving locale
information. See subclauses A.3, A.4.11, and A.19. The container library is extended to
include bounded forms of the existing containers and new containers for indefinite objects,
multiway trees, and queues. See subclause A.18.

e Finally, certain features are added primarily to ease the use of containers, such as the ability
to iterate over all elements in a container without having to encode the iteration. These can
also be used for iteration over arrays, and within quantified expressions. See subclauses 4.1.5,
4.1.6,5.5.1,and 5.5.2.

Xvii © ISO/IEC 2012 — Al rights reserved

ISO/IEC 8652:2012(E)

Instructions for Comment Submission

Informal comments on this International Standard may be sent via e-mail to ada-comment@ada-
auth.org. If appropriate, the Project Editor will initiate the defect correction procedure.

Comments should use the following format:

topic Title summarizing comment
!reference Ada 2012 RMss.ss(pp)
from Author Name yy-mm-dd
'keywords keywords related to topic
!discussion

text of discussion

where ss.s5 18 the clause or subclause number, pp is the paragraph number where applicable, and yy-
mm-dd is the date the comment was sent. The date is optional, as is the !keywords line.

Please use a descriptive “Subject” in your e-mail message, and limit each message to a single
comment.

When correcting typographical errors or making minor wording suggestions, please put the correction
directly as the topic of the comment; use square brackets [] to indicate text to be omitted and curly
braces { } to indicate text to be added, and provide enough context to make the nature of the
suggestion self-evident or put additional information in the body of the comment, for example:

!topic [c]{C}haracter

!topic it[']s meaning is not defined
Formal requests for interpretations and for reporting defects in this International Standard may be
made in accordance with the ISO/IEC JTC 1 Directives and the ISO/IEC JTC 1/SC 22 policy for
interpretations. National Bodies may submit a Defect Report to ISO/IEC JTC 1/SC 22 for resolution
under the JTC 1 procedures. A response will be provided and, if appropriate, a Technical
Corrigendum will be issued in accordance with the procedures.

© ISO/IEC 2012 — All rights reserved xviii

INTERNATIONAL STANDARD ISO/IEC 8652:2012(E)

Information technology — Programming
Languages — Ada

1 General

1.1 Scope

This International Standard specifies the form and meaning of programs written in Ada. Its purpose is
to promote the portability of Ada programs to a variety of computing systems.

Ada is a programming language designed to support the construction of long-lived, highly reliable
software systems. The language includes facilities to define packages of related types, objects, and
operations. The packages may be parameterized and the types may be extended to support the
construction of libraries of reusable, adaptable software components. The operations may be
implemented as subprograms using conventional sequential control structures, or as entries that
include synchronization of concurrent threads of control as part of their invocation. Ada supports
object-oriented programming by providing classes and interfaces, inheritance, polymorphism of
variables and methods, and generic units. The language treats modularity in the physical sense as
well, with a facility to support separate compilation.

The language provides rich support for real-time, concurrent programming, and includes facilities for
multicore and multiprocessor programming. Errors can be signaled as exceptions and handled
explicitly. The language also covers systems programming; this requires precise control over the
representation of data and access to system-dependent properties. Finally, a predefined environment
of standard packages is provided, including facilities for, among others, input-output, string
manipulation, numeric elementary functions, and random number generation, and definition and use
of containers.

1.1.1 Extent
This International Standard specifies:
e The form of a program written in Ada;
e The effect of translating and executing such a program;
e The manner in which program units may be combined to form Ada programs;
e The language-defined library units that a conforming implementation is required to supply;

e The permissible variations within the standard, and the manner in which they are to be
documented,;

1 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:2012(E)

e Those violations of the standard that a conforming implementation is required to detect, and
the effect of attempting to translate or execute a program containing such violations;

e Those violations of the standard that a conforming implementation is not required to detect.

This International Standard does not specify:

e The means whereby a program written in Ada is transformed into object code executable by a
processor;

e The means whereby translation or execution of programs is invoked and the executing units
are controlled;

e The size or speed of the object code, or the relative execution speed of different language
constructs;

e The form or contents of any listings produced by implementations; in particular, the form or
contents of error or warning messages;

e The effect of unspecified execution.

e The size of a program or program unit that will exceed the capacity of a particular conforming
implementation.

1.1.2 Structure
This International Standard contains thirteen clauses, fifteen annexes, and an index.
The core of the Ada language consists of:

e Clauses 1 through 13

e Annex A, “Predefined Language Environment”

e Annex B, “Interface to Other Languages”

e Annex J, “Obsolescent Features”

The following Specialized Needs Annexes define features that are needed by certain application areas:
e Annex C, “Systems Programming”
e Annex D, “Real-Time Systems”
e Annex E, “Distributed Systems”
e Annex F, “Information Systems”
e Annex G, “Numerics”

e Annex H, “High Integrity Systems”

The core language and the Specialized Needs Annexes are normative, except that the material in each
of the items listed below is informative:

e Text under a NOTES or Examples heading.
e Each subclause whose title starts with the word “Example” or “Examples”.

All implementations shall conform to the core language. In addition, an implementation may conform
separately to one or more Specialized Needs Annexes.

The following Annexes are informative:
e Annex K, “Language-Defined Aspects and Attributes”
e Annex L, “Language-Defined Pragmas”
e Annex M, “Summary of Documentation Requirements”

e Annex N, “Glossary”

© ISO/IEC 2012 — All rights reserved 2

ISO/IEC 8652:2012(E)

e Annex P, “Syntax Summary”
e Annex Q, “Language-Defined Entities”

Each section is divided into subclauses that have a common structure. Each clause and subclause first
introduces its subject. After the introductory text, text is labeled with the following headings:

Syntax
Syntax rules (indented).
Name Resolution Rules

Compile-time rules that are used in name resolution, including overload resolution.

Legality Rules

Rules that are enforced at compile time. A construct is legal if it obeys all of the Legality Rules.

Static Semantics

A definition of the compile-time effect of each construct.

Post-Compilation Rules

Rules that are enforced before running a partition. A partition is legal if its compilation units are legal
and it obeys all of the Post-Compilation Rules.

Dynamic Semantics

A definition of the run-time effect of each construct.

Bounded (Run-Time) Errors

Situations that result in bounded (run-time) errors (see 1.1.5).

Erroneous Execution

Situations that result in erroneous execution (see 1.1.5).

Implementation Requirements

Additional requirements for conforming implementations.

Documentation Requirements

Documentation requirements for conforming implementations.

Metrics

Metrics that are specified for the time/space properties of the execution of certain language constructs.

Implementation Permissions

Additional permissions given to the implementer.

Implementation Advice

Optional advice given to the implementer. The word “should” is used to indicate that the advice is a
recommendation, not a requirement. It is implementation defined whether or not a given
recommendation is obeyed.

NOTES
1 Notes emphasize consequences of the rules described in the (sub)clause or elsewhere. This material is informative.

Examples

Examples illustrate the possible forms of the constructs described. This material is informative.

3 © ISO/IEC 2012 — All rights reserved

ISO/IEC 8652:2012(E)

1.1.3 Conformity of an Implementation with the Standard

Implementation Requirements

A conforming implementation shall:

e Translate and correctly execute legal programs written in Ada, provided that they are not so
large as to exceed the capacity of the implementation;

e Identify all programs or program units that are so large as to exceed the capacity of the
implementation (or raise an appropriate exception at run time);

e Identify all programs or program units that contain errors whose detection is required by this
International Standard;

e Supply all language-defined library units required by this International Standard;

e Contain no variations except those explicitly permitted by this International Standard, or
those that are impossible or impractical to avoid given the implementation's execution
environment;

e Specify all such variations in the manner prescribed by this International Standard.

The external effect of the execution of an Ada program is defined in terms of its interactions with its
external environment. The following are defined as external interactions:

e Any interaction with an external file (see A.7);

e The execution of certain code_statements (see 13.8); which code_statements cause external
interactions is implementation defined.

¢ Any call on an imported subprogram (see Annex B), including any parameters passed to it;

e Any result returned or exception propagated from a main subprogram (see 10.2) or an
exported subprogram (see Annex B) to an external caller;

¢ Any read or update of an atomic or volatile object (see C.6);

e The values of imported and exported objects (see Annex B) at the time of any other
interaction with the external environment.

A conforming implementation of this International Standard shall produce for the execution of a given
Ada program a set of interactions with the external environment whose order and timing are
consistent with the definitions and requirements of this International Standard for the semantics of the
given program.

An implementation that conforms to this Standard shall support each capability required by the core
language as specified. In addition, an implementation that conforms to this Standard may conform to
one or more Specialized Needs Annexes (or to none). Conformance to a Specialized Needs Annex
means that each capability required by the Annex is provided as specified.

An implementation conforming to this International Standard may provide additional aspects,
attributes, library units, and pragmas. However, it shall not provide any aspect, attribute, library unit,
or pragma having the same name as an aspect, attribute, library unit, or pragma (respectively)
specified in a Specialized Needs Annex unless the provided construct is either as specified in the
Specialized Needs Annex or is more limited in capability than that required by the Annex. A program
that attempts to use an unsupported capability of an Annex shall either be identified by the
implementation before run time or shall raise an exception at run time.

Documentation Requirements

Certain aspects of the semantics are defined to be either implementation defined or unspecified. In
such cases, the set of possible effects is specified, and the implementation may choose any effect in
the set. Implementations shall document their behavior in implementation-defined situations, but

© ISO/IEC 2012 — All rights reserved 4

ISO/IEC 8652:2012(E)

documentation is not required for unspecified situations. The implementation-defined characteristics
are summarized in M.2.

The implementation may choose to document implementation-defined behavior either by
documenting what happens in general, or by providing some mechanism for the user to determine
what happens in a particular case.

Implementation Advice

If an implementation detects the use of an unsupported Specialized Needs Annex feature at run time,
it should raise Program_Error if feasible.

If an implementation wishes to provide implementation-defined extensions to the functionality of a
language-defined library unit, it should normally do so by adding children to the library unit.

NOTES
2 The above requirements imply that an implementation conforming to this Standard may support some of the
capabilities required by a Specialized Needs Annex without supporting all required capabilities.

1.1.4 Method of Description and Syntax Notation

The form of an Ada program is described by means of a context-free syntax together with context-
dependent requirements expressed by narrative rules.

The meaning of Ada programs is described by means of narrative rules defining both the effects of
each construct and the composition rules for constructs.

The context-free syntax of the language is described using a simple variant of Backus-Naur Form. In
particular:

e Lower case words in a sans-serif font, some containing embedded underlines, are used to
denote syntactic categories, for example:

case_statement
¢ Boldface words are used to denote reserved words, for example:
array
e Square brackets enclose optional items. Thus the two following rules are equivalent.

simple_return_statement ::= return [expression];
simple_return_statement ::= return; | return expression;

e Curly brackets enclose a repeated item. The item may appear zero or more times; the
repetitions occur from left to right as with an equivalent left-recursive rule. Thus the two
following rules are equivalent.

term ::= factor {multiplying_operator factor}
term ::= factor | term multiplying_operator factor

e A vertical line separates alternative items unless it occurs immediately after an opening curly
bracket, in which case it stands for itself:

constraint ::= scalar_constraint | composite_constraint
discrete_choice_list ::= discrete_choice {| discrete_choice}

e [f the name of any syntactic category starts with an italicized part, it is equivalent to the
category name without the italicized part. The italicized part is intended to convey some
semantic information. For example subtype name and task name are both equivalent to
name alone.

The delimiters, compound delimiters, reserved words, and numeric_literals are exclusively made of
the characters whose code point is between 16#20# and 16#7E#, inclusively. The special characters
for which names are defined in this International Standard (see 2.1) belong to the same range. For

5 © ISO/IEC 2012 — All rights reserved

